Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bösartige Hirntumoren wirkungsvoller behandeln / Innovativer Ansatz an der WWU

03.09.2010
Glioblastome gehören zu den häufigsten und bösartigsten Hirntumoren. Jeder vierte an einem Hirntumor erkrankte Patient leidet an einem Glioblastom.

Trotz intensiver Forschung sind die Mechanismen des Wachstums und der Wanderung dieser Tumoren noch nicht vollends aufgeklärt, weshalb wesentliche Fortschritte in der Therapie bislang ausblieben. Das soll sich durch ein neue Untersuchung an der Universität Münster ändern: Die Deutsche Krebshilfe fördert einen innovativen Forschungsansatz aus dem Institut für Experimentelle Ophthalmologie in den kommenden drei Jahren mit 252.000 Euro.

„Die Kommunikation der Gliomzelle mit ihrer unmittelbaren Umgebung ist hoch komplex“, erläutert Institutsdirektor Prof. Solon Thanos. „Bevor wir diese nicht bis in Detail verstehen, kommen auch wir mit den Therapien nicht weiter.“ Patienten, bei denen das weniger aggressive anaplastische Astrozytom diagnostiziert wurde, haben derzeit eine durchschnittliche Lebenserwartung von knapp drei Jahren. Beim Glioblastom dauert die Überlebenszeit nur ein Jahr; eine neuere kombinierte Therapie verlängert sie im Schnitt nur um drei Monate.

Gliazellen füllen die Hohlräume zwischen den Nervenzellen und Nervenzellfortsätzen aus und bilden eine Art stützendes und die Nervenzellen versorgendes Gewebe. Wenn sie zu Gliomzellen entarten, wandern sie entlang ausgewachsener Nervenbahnen der weißen Substanz im Gehirn und bilden dort Absiedlungen. „Wir möchten noch genauer wissen, wie sich Gliomzellen und Nervenfasern biochemisch austauschen und miteinander kommunizieren“, erklärt Prof. Thanos. „In einem von uns entwickelten Modell werden wir im Reagenzglas Gliomzellen mit teils myelinisierten, teils unmyelinisierten Nervenfasern derart zusammen kultivieren, dass die Gliomzellen direkte Kontakte zu den Nervenfasern aufnehmen.“

Das Myelin ist eine fetthaltige Isolationshülle, die einen Teil der Nervenfortsätze umgibt und sie elektrisch isoliert. Stark myelinisierte Regionen des Gehirns erscheinen unter dem Mikroskop weiß - im Gegensatz zur grauen Hirnrinde, daher spricht man auch von der „weißen Substanz“. „In den biochemischen Austausch von Gliomzellen und Nervenfasern können wir in unserem Modell gezielt eingreifen“, berichtet der Forscher. „So konnten wir bisher bereits zeigen, dass eine Blockierung bestimmter Enzyme die Wanderung von Gliomzellen hemmt. Dieser neue Ansatz werden wir nun fortführen“, blickt Thanos nach vorn. Sein Institut wurde erst im Juni 2010 von der Medizinischen Fakultät gegründet; es ging aus einer Abteilung der Augenklinik des Universitätsklinikums Münster hervor.

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.campus.uni-muenster.de/expoph.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit