Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bösartige Hirntumoren wirkungsvoller behandeln / Innovativer Ansatz an der WWU

03.09.2010
Glioblastome gehören zu den häufigsten und bösartigsten Hirntumoren. Jeder vierte an einem Hirntumor erkrankte Patient leidet an einem Glioblastom.

Trotz intensiver Forschung sind die Mechanismen des Wachstums und der Wanderung dieser Tumoren noch nicht vollends aufgeklärt, weshalb wesentliche Fortschritte in der Therapie bislang ausblieben. Das soll sich durch ein neue Untersuchung an der Universität Münster ändern: Die Deutsche Krebshilfe fördert einen innovativen Forschungsansatz aus dem Institut für Experimentelle Ophthalmologie in den kommenden drei Jahren mit 252.000 Euro.

„Die Kommunikation der Gliomzelle mit ihrer unmittelbaren Umgebung ist hoch komplex“, erläutert Institutsdirektor Prof. Solon Thanos. „Bevor wir diese nicht bis in Detail verstehen, kommen auch wir mit den Therapien nicht weiter.“ Patienten, bei denen das weniger aggressive anaplastische Astrozytom diagnostiziert wurde, haben derzeit eine durchschnittliche Lebenserwartung von knapp drei Jahren. Beim Glioblastom dauert die Überlebenszeit nur ein Jahr; eine neuere kombinierte Therapie verlängert sie im Schnitt nur um drei Monate.

Gliazellen füllen die Hohlräume zwischen den Nervenzellen und Nervenzellfortsätzen aus und bilden eine Art stützendes und die Nervenzellen versorgendes Gewebe. Wenn sie zu Gliomzellen entarten, wandern sie entlang ausgewachsener Nervenbahnen der weißen Substanz im Gehirn und bilden dort Absiedlungen. „Wir möchten noch genauer wissen, wie sich Gliomzellen und Nervenfasern biochemisch austauschen und miteinander kommunizieren“, erklärt Prof. Thanos. „In einem von uns entwickelten Modell werden wir im Reagenzglas Gliomzellen mit teils myelinisierten, teils unmyelinisierten Nervenfasern derart zusammen kultivieren, dass die Gliomzellen direkte Kontakte zu den Nervenfasern aufnehmen.“

Das Myelin ist eine fetthaltige Isolationshülle, die einen Teil der Nervenfortsätze umgibt und sie elektrisch isoliert. Stark myelinisierte Regionen des Gehirns erscheinen unter dem Mikroskop weiß - im Gegensatz zur grauen Hirnrinde, daher spricht man auch von der „weißen Substanz“. „In den biochemischen Austausch von Gliomzellen und Nervenfasern können wir in unserem Modell gezielt eingreifen“, berichtet der Forscher. „So konnten wir bisher bereits zeigen, dass eine Blockierung bestimmter Enzyme die Wanderung von Gliomzellen hemmt. Dieser neue Ansatz werden wir nun fortführen“, blickt Thanos nach vorn. Sein Institut wurde erst im Juni 2010 von der Medizinischen Fakultät gegründet; es ging aus einer Abteilung der Augenklinik des Universitätsklinikums Münster hervor.

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.campus.uni-muenster.de/expoph.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteintransport - Stau in der Zelle

24.03.2017 | Physik Astronomie

Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel

24.03.2017 | Verfahrenstechnologie

Der steile Aufstieg der Berner Alpen

24.03.2017 | Geowissenschaften