Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutkrebs: Künstliche Antikörper regen körpereigene Abwehrkräfte an

01.06.2011
Dem Körper den richtigen Impuls geben, damit er sich selbst heilen kann, so lautet das Credo der modernen Krebsbehandlung.

Forscherteams um PD Dr. Bernhard Stockmeyer und Prof. Dr. Georg Fey am Universitätsklinikum Erlangen ist es gelungen, künstliche Antikörperderivate herzustellen, die in Zusammenarbeit mit dem körpereigenen Immunsystems gezielt Tumorzellen zerstören. Diese Immuntherapiemethode eignet sich insbesondere für die Behandlung von Blutkrebs. Sie soll nun prä-klinisch für den zukünftigen Einsatz am Patienten weiter entwickelt werden.

Antikörper und daraus abgeleitet Therapeutika haben in den vergangenen Jahren in der Tumortherapie zunehmend an Bedeutung gewonnen und sind heute fester Bestandteil der Behandlung bestimmter Leukämien und Tumoren des Lymphgewebes, sowie einiger Formen von Brust- und Darmkrebs. Zum Einsatz kommen nicht nur ganze, unmodifizierte Antikörper, sondern zunehmend auch gentechnisch abgewandelte Konstrukte. Dem Forscherteam um Dr. Bernhard Stockmeyer und Prof. Dr. Georg Fey ist es gelungen, spezielle Antikörperderivate für den Einsatz gegen Blutkrebs-Erkrankungen mit Methoden der Gentechnik künstlich zusammenzubauen. Insbesondere sollen damit Krebsformen behandelt werden, deren Therapieerfolge mit den bisherigen Methoden noch unbefriedigend sind.

Antikörper patrouillieren im Blut und in Gewebsflüssigkeiten. Sobald sie mit einem ihrer Fühler eine fremde oder kranke Struktur erkennen, auf die sie spezialisiert sind, heften sie sich dort an. Anschließend locken sie Abwehrzellen des Immunsystems, beispielweise Natürliche Killerzellen oder Granulozyten an, die kranke Zellen schließlich abtöten und entsorgen. Mit vielen Krebserkrankungen ist das körpereigene Immunsystem jedoch überfordert. Künstliche Antikörperderivate können dann helfen, die körpereigenen Abwehrzellen gezielt zu aktivieren.

Die Herstellung künstlichen Antikörperderivate erfolgt nach dem Baukastenprinzip. Die Forscher wählen gezielt Elemente mit bestimmten Funktionen aus und konstruieren daraus einen künstlichen Wirkstoff, der in der Grundstruktur mit einem natürlichen Antikörper verwandt ist. Die künstlichen Antikörperderivate der Erlanger Forscher verfügen über zwei Fühler, die jeweils auf eine typische Oberflächenstruktur (Antigen) von entarteter B-Lymphozyten spezialisiert sind. Es handelt sich dabei um die Antigen-Strukturen „CD19“ und „HLA-Klasse II“.

Zwei unterschiedliche Stellen auf den Tumorzellen erkennen zu können ist besonders vorteilhaft, weil es die Zielgenauigkeit des Abwehrsystems erhöht. Gesundes Gewebe bleibt auf diese Weise eher verschont. Darüber hinaus verfügen die Antikörperderivate wie ihre natürlichen Vorbilder über eine dritte Bindungsstelle mit der sie die Abwehrzellen des Immunsystems anlocken. Die Arbeitsgruppe um Professor Fey hat einen Wirkstoff kreiert, der Natürliche Killerzellen bindet. Der Wirkstoff der Arbeitsgruppe um PD Dr. Stockmeyer dagegen knüpft den Kontakt zu Granulozyten.

Die Bausteine für ihre künstlichen Antikörperderivate stellen die Forscher im Labor her. Als Basis dienen verschiedene natürliche Antikörper. Von diesen werden die gewünschten Bindungsstellen mit molekularbiologischen Methoden isoliert, vervielfacht und zu einem neuen Molekül kombiniert. Ergebnis sind kleine aus drei Modulen aufgebaute Antikörper, die als Immunpharmazeutika dienen können – sogenannte trispezifische Antikörperderivate oder Tribodies.

Die Arbeitsgruppe um Professor Fey konnte im Reagenzglas zeigen, dass ihr Tribody Natürliche Killerzellen sehr effizient zur Zerstörung verschiedener bösartiger B-Lymphozyten anregt. „Die Ergebnisse sind sehr ermutigend und lassen hoffen, dass derartige Moleküle körpereigene Immunzellen so aktivieren, dass sie Tumorpatienten eine weitere Chance zur Heilung geben können“, freut sich Professor Fey über das Ergebnis. Der Tribody der Arbeitsgruppe Stockmeyer brachte ebenfalls die erwünschte Wirkung: Durch dessen Einsatz wurden Granulozyten aktiviert, entartete B-Lymphozyten effektiv zu zerstören.

Die Ergebnisse der Teams um Stockmeyer und Fey sollen somit zum Erfolg dieser neuen Wirkstoff-Formate beitragen. Die neuen Immunpharmazeutika haben das Potenzial besonders gezielt auf die Tumorzellen zu wirken. Deshalb hoffen die Forscher, dass sie weniger unerwünschte Nebenwirkungen als konventionelle Therapeutika bei den Patienten hervorrufen. Die bessere Verträglichkeit sollte sich insbesondere dadurch ergeben, dass die künstlichen Antikörper die körpereigenen Abwehrkräfte mobilisieren, anstatt diese durch hoch-toxische, chemisch synthetisierte Therapeutika lahm zu legen. In Zukunft werden derartige Antikörper-Derivate vermutlich in Kombination mit Chemotherapeutika eingesetzt und sollten es daher ermöglichen, die erforderliche Verabreichungsmenge der Chemotherapeutika beträchtlich zu reduzieren.

Die Wilhelm Sander-Stiftung hat das beschriebene Forschungsprojekt mit rund 170.000 Euro gefördert. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontakt:
PD Dr. Bernhard Stockmeyer
Universitätsklinikum Erlangen-Nürnberg, Medizinische Klinik 5
Hämatologie und Internistische Onkologie
E-Mail: Bernhard.Stockmeyer@uk-erlangen.de
http://www.medizin5.ukerlangen.de/e1846/e511/index_ger.html

Sylvia Kloberdanz | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Tropenviren bald auch in Europa? Bayreuther Forscher untersuchen Folgen des Klimawandels
21.06.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften