Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biobank für die Uni-Medizin

04.07.2011
Für fünf Millionen Euro entsteht in Würzburg eine von fünf nationalen Biomaterial- und Datenbanken. 29 Standorte hatten sich um die Fördermittel des Bundesforschungsministeriums beworben, erfolgreich waren am Ende Aachen, Berlin, Heidelberg, Kiel und Würzburg. Die Biobanken sollen die Erkennung und Behandlung von Krankheiten weiter verbessern helfen.

In Biobanken werden systematisch Gewebe- und Flüssigkeitsproben von Patienten gesammelt und langfristig aufbewahrt. Wissenschaftler messen den Biobanken für den medizinischen Fortschritt eine große Bedeutung bei: Sie hoffen, mit Hilfe der Proben Krankheiten und ihre Ursachen besser zu verstehen, besser zu diagnostizieren und im Idealfall auch besser behandeln zu können.

Biomarker spielen dabei eine zentrale Rolle. Damit sind Merkmale gemeint, die Aufschluss über die Art der Erkrankung und deren Verlauf geben. Bei der Herzschwäche zum Beispiel sind es Peptid-Moleküle im Blut, die den Ärzten die Krankheit schon dann anzeigen, wenn die Betroffenen selbst noch kaum Symptome spüren. Auch bei der Behandlung von Krebskrankheiten spielen Biomarker eine große Rolle. „Biomarker helfen uns dabei, die Therapie für sehr viele Patienten individuell zu gestalten“, sagt Professor Roland Jahns. Der Herzspezialist hat den Würzburger Antrag auf eine zentrale Biobank federführend koordiniert.

Wofür eine Biobank gut ist

In der Biobank sammeln die Mediziner Proben für die Forschung der Zukunft. Denkbar ist zum Beispiel, dass in fünf Jahren ein neuer Biomarker entdeckt wird, der eine Krebserkrankung schon in einem sehr frühen Stadium anzeigt. „Dann können wir die eingelagerten Proben daraufhin untersuchen, ob die Konzentration des Biomarkers mit dem Krankheitsverlauf in Verbindung steht“, erklärt Professor Jahns.

Steigt die Biomarker-Menge an, wenn sich die Krankheit verschlimmert? Lässt sich mit dem Biomarker frühzeitig ein Rückfall erkennen? Solche und andere Fragen können die Wissenschaftler mit Hilfe einer Biobank dann schnell und auf Basis vieler Patientendaten bearbeiten – und dabei Erkenntnisse gewinnen, die Diagnostik und Therapie verbessern. Jahns bezeichnet Biobanken darum als einen „schier unerschöpflichen Schatz für die Gesundheitsforschung“.

Was mit den Proben geschieht

In der Würzburger Biobank wollen die Mediziner systematisch Gewebe-, Blut-, Urin- und Speichelproben von möglichst vielen Patienten des Universitätsklinikums sammeln – natürlich nur, wenn die Patienten zustimmen. Die Schwerpunkte liegen dabei auf Krebserkrankungen, Herz-Kreislauf-Leiden, Stoffwechsel-Krankheiten und neurologischen Erkrankungen, außerdem auf seltenen angeborenen Muskelerkrankungen.

Die Proben werden unter einer strengen Qualitätskontrolle mehrere Jahrzehnte lang in Tiefkühllagern aufbewahrt. Über eine zentrale Datenbank lassen sie sich verschiedenen Krankheitsstadien und anderen Untersuchungsbefunden zuordnen.

„Medizinische Forschungsprojekte bekommen nur auf Anfrage Zugang zu den Proben und Daten – und das selbstverständlich unter Einhaltung der ethischen Standards und datenschutzrechtlichen Vorschriften“, sagt Roland Jahns. Generell werde in der Biobank jeglicher Personenbezug unkenntlich gemacht, Probendaten und klinischen Daten grundsätzlich getrennt voneinander gespeichert.

Wo die Biobank stehen wird

Die Biobank untersteht der Medizinischen Fakultät der Universität. Ihre Verwaltungszentrale befindet sich derzeit im Gebäude A9 des Universitätsklinikums, am Straubmühlweg. Gleich daneben wird voraussichtlich Anfang 2012 ein Tiefkühllager für flüssige Proben errichtet. Das Gebäude soll im Endausbau drei so genannte Kryo-Container enthalten, zunächst wird aber nur einer installiert.

Kryo-Container sind robotergesteuerte Lager, in denen die Proben eingefroren sind. Jeder Container ist etwa so groß wie eine Doppelgarage, fasst bis zu 550.000 Einzelproben und kostet 1,5 Millionen Euro. Die Gewebeproben der Würzburger Biobank werden an einem anderen Ort aufbewahrt, in Tiefkühltanks des Pathologischen Instituts.

Bis der Bau des Tiefkühllagers startet, haben die Mediziner noch einige Koordinationsaufgaben zu erledigen. Unter anderem gilt es, die Eingliederung bestehender Biomaterial-Sammlungen einzelner Kliniken in die zentrale Biobank vorzubereiten.

Wie die Patienten informiert werden

In Planung ist auch eine Informationskampagne, denn schließlich sollen möglichst viele Patienten mit der langfristigen Aufbewahrung ihrer Proben und Daten einverstanden sein – in der Überzeugung, damit in Zukunft vielleicht einen Beitrag zu besseren Therapien leisten zu können. Der nagelneue Internet-Auftritt der Biobank stellt schon jetzt erste Informationen bereit.

Zur Homepage der Interdisziplinären Biomaterial- und Datenbank (IBDW) der Universität und des Universitätsklinikums Würzburg: http://ibdw.uk-wuerzburg.de

Kontakt

Prof. Dr. Roland Jahns, Interdisziplinäre Biomaterial- und Datenbank Würzburg, T (0931) 201-46368, jahns_r@klinik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://ibdw.uk-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops