Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungsanalyse für die Arbeitsergonomie

30.09.2014

Wer körperlichen Verschleißerscheinungen am Arbeitsplatz vorbeugen will, muss den Bewegungsablauf bei der Arbeit genau kennen und biomechanisch auswerten. Mit Infrarotkameras und Kraftmessplatten im Boden misst und analysiert das Fraunhofer IPA Bewegung live auf der Messe Motek 2014. Das Messsystem lässt sich in einen realen Arbeitsplatz integrieren.

Fast 7 Millionen Menschen bekommen jedes Jahr in der EU ernsthafte gesundheitliche Beschwerden durch ihre Tätigkeiten am Arbeitsplatz. Oft liegt es daran, dass die Arbeitsabläufe in den Fabriken nicht ergonomisch gestaltet sind. Oder dass den Arbeitern eine geeignete Schulung fehlt, wie sie sich zu verhalten haben. Sie gewöhnen sich ungesunde Bewegungsabläufe an, die auf Dauer zu Verschleißerscheinungen führen.


Ergonomischer Arbeitsplatz mit Modulbodensystem.

Quelle: Fraunhofer IPA

Rückenschmerzen sind besonders häufig, aber auch Beschwerden in Händen und Armen. Die Probleme der Arbeitsergonomie gewinnen zunehmend an Bedeutung, da die Belegschaften infolge des demographischen Wandels immer älter werden – und damit anfälliger für Krankheiten und Verletzungen.

Um die körperlichen Anforderungen an einem Arbeitsplatz exakt angeben zu können, analysiert das Expertenteam der Abteilung Biomechatronische Systeme, bestehend aus Sportwissenschaftlern, Physiotherapeuten, Ingenieuren und Informatikern, Bewegungsabläufe und ermittelt daraus die Belastungen für Gelenke, Muskeln und Sehnen.

Wie eine solche Analyse funktioniert, zeigt live der mobile Messplatz in Halle 3, Stand 3330. Synchronisierte Infrarot-Kameras zeichnen aus unterschiedlichen Richtungen die Bewegungsabläufe auf. Dazu wird ein Proband an exponierten Stellen seines Körpers mit Messpunkten versehen, vor allem an den Gelenken. Kraftmessplatten am Boden liefern zusätzliche Daten.

Aus ihnen lässt sich der Kraftfluss vom Fuß über Knie und Hüften bis hin zu den Armen und Händen zurückrechnen. So erhält man für jedes der genannten Körperteile die jeweiligen Belastungen und Bewegungsabläufe.

Durch das Modulbodensystem und ein Adaptersystem für die Kameras kann das biomechanische Messsystem in einen realen Arbeitsplatz integriert werden. So können die Wissenschaftler unter realen Bedingungen Arbeitsabläufe messen, bewerten und anpassen – etwa über Simulation und Darstellung in 3D.

»Wir haben Avatar-Modelle entwickelt, die auf dem Bildschirm zeigen, welche Bewegungsabläufe richtig und welche falsch sind. Ein grünes Männchen signalisiert die korrekte Haltung, ein rotes Gefahr. Diese anschaulichen Darstellungen lassen sich vor allem in Schulungen der Unternehmen verwenden«, beschreibt Felix Starker, Leiter der Gruppe Angewandte Biomechanik, die aktuelle Entwicklung auf diesem Gebiet.

Natürlich lassen sich die Daten auch nutzen, um Hilfsmittel herzustellen. Von individuell angepassten 3D-gedruckten Orthesen über körperschonende Werkzeuge bis hin zu Exoskeletten – die Stuttgarter Wissenschaftler arbeiten interdisziplinär an individuellen Lösungsansätzen. Oft sind allerdings überhaupt keine aufwendigen Hilfsmittel nötig, wie eine Bewegungsanalyse im Chemnitzer Werk des Volkswagen-Konzerns zeigte.

Dort klagten mehrere Arbeiter bei der Montage des Motorblocks über eine Sehnenscheidenentzündung im Handgelenk. Die Analyse des Bewegungsablaufs zeigte, wie man die Bewegung der Gelenke führen sollte, um dem Verschleiß vorzubeugen. Die betroffenen Arbeiter erhielten zunächst zur Stabilisierung des Handgelenks ein sogenanntes Kinesiotape, wie man es bei Leistungssportlern nutzt.

Das Ergebnis: Die relativ einfache Orthese zeigte die erwünschte Wirkung. Zukünftig werden alle Arbeiter dieser Abteilung anstelle des konventionellen Schutzhandschuhs einen Spezialhandschuh überziehen, in den das stützende Band bereits eingearbeitet ist.

Fachliche Ansprechpartner
Florian Blab M. A. | Telefon +49 711 970-3661 | florian.blab@ipa.fraunhofer.de Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Dr. Urs Schneider | Telefon +49 711 970-3630 | urs.schneider@ipa.fraunhofer.de Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten