Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegt und in Farbe: Wissenschaftler haben beobachtet, wie sich Viren durch die Zellen ihrer Wirte bewegen

13.08.2013
Dem Tod auf der Spur: Wissenschaftler aus Marburg und Hannover haben beobachtet, wie sich Viren durch die Zellen ihrer Wirte bewegen.

Die Krankheitserreger können vergleichsweise lange Strecken zurücklegen, indem sie sich am Gerüst der Wirtszellen entlanghangeln, stellte das Team um Professor Dr. Stephan Becker und Gordian Schudt am Beispiel des Marburg-Virus (MARV) fest. Den Forschern gelang es, die Virenbestandteile mit einem Farbstoff zu markieren, der eine leuchtende Spur hinterlässt.


Die gelborange leuchtenden Viruspartikel bewegen sich entlang der fingerförmigen Filopodien, wie die zeitversetzten Aufnahmen zeigen. (Fotos: Gordian Schudt / Philipps-Universität)

Die Ergebnisse der Untersuchungen sind in der aktuellen Online-Vorabausgabe der Wissenschaftszeitschrift „Proceedings of the National Academy of Sciences of the USA“ (PNAS) nachzulesen.

„Dank der Markierung mit Fluoreszenzfarbstoffen wissen wir nun, wie der Transport der Virenbestandteile vonstattengeht und an welchem Ort die infektiösen Partikel zusammengesetzt werden“, fasst Becker die Ergebnisse der Untersuchung zusammen. Viren bergen ihr Erbgut in einer mehrschichtigen Hülle, die aus dem innenliegenden Kapsid sowie einer Zwischenschicht oder Matrix besteht; wenn ein Erreger die Wirtszelle verlässt, so umgibt er sich noch mit einem Teil von deren Zellmembran, so dass die Matrix zwischen dieser und dem Kapsid zu liegen kommt.

Das Marburg-Virus und nahverwandte Erreger nutzen fingerförmige Ausstülpungen der Zellen, sogenannte Filopodien, um sich in die Umgebung auszuschleusen, so dass sie neue Opfer befallen können. Aber wie gelangen Kapsid- und Matrixproteine an die Austrittsstelle, wann und wo schließen sie sich zusammen?

Die Wissenschaftler entwickelten ein Verfahren, um die Proteine farbig aufleuchten lassen, so dass man unter dem Mikroskop den Weg der Virenbestandteile nachverfolgen kann. „Man sieht sie in Echtzeit durch die Zelle sausen“, schildert Becker das Ergebnis. Die Aufnahmen sehen aber nicht nur schön aus, betont der Virologe: Sie zeigen, dass sich die Kapsidproteine unabhängig vom Matrixprotein VP40 zur Zellmembran bewegen. Die Virenbestandteile nutzen hierfür die Aktinfilamente des Zytoskeletts. Erst nachdem sich die beiden Komponenten miteinander vereinigt haben, können sie über die Filopodien zur Austrittsstelle gelangen.

„Der Erfolg macht uns zuversichtlich, dass mit unserer Methode auch einiges über zelluläre Transportwege zu lernen ist“, sagt Becker. „Außerdem sind solche Stoffwechselwege, die von Viren benutzt werden, natürlich auch immer mögliche Ziele für antivirale Medikamente, von denen es für das Marburg-Virus ja noch keine gibt.“ Der Erreger ruft hohes Fieber und Blutungen hervor, die zum Tode führen können.

Stephan Becker leitet das Institut für Virologie der Philipps-Universität, das über eines der modernsten Hochsicherheitslabore weltweit verfügt. Der Virologe ist außerdem maßgeblich am „Deutschen Zentrum für Infektionsforschung“ (DZIF) beteiligt und amtiert als Sprecher des Sonderforschungsbereichs 1021 der Deutschen Forschungsgemeinschaft (DFG), der sich mit RNA-Viren beschäftigt. Die vorliegende Studie wurde sowohl von der „Leibniz Graduate School for Emerging Infectious Diseases“ (EIDIS) als auch von der DFG finanziell gefördert.

Originalveröffentlichung: Gordian Schudt & al.: Live cell imaging of Marburg virus infected cells uncovers actin-dependent transport of nucleocapsids over long distances, PNAS 2013

Ansprechpartner: Professor Dr. Stephan Becker,
Institut für Virologie
Tel.: 06421 28-66253
E-Mail: Becker@staff.uni-marburg.de
Internet: http://www.uni-marburg.de/fb20/virologie
Online-Ressourcen:
Medieninformation zum SFB 1021:
http://www.uni-marburg.de/aktuelles/news/2012d/1121a
Medieninformation zum DZIF:
http://www.uni-marburg.de/aktuelles/news/2012b/0629a
http://www.uni-marburg.de/aktuelles/news/2012d/1214c

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sind Epilepsie-Patienten wetterfühlig?
23.05.2017 | Universitätsklinikum Jena

nachricht Dual-Layer Spektral-CT: Bessere Therapieplanung beim Bauchspeicheldrüsenkrebs
18.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten