Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Bildgebung: krankhafte Veränderungen von Zellen sichtbar machen

07.05.2002


Mit bildgebenden Verfahren, etwa der Magnetresonanz-Tomographie, lassen sich biologische Prozesse auf zellulärer Ebene sichtbar machen. Wissenschaftlich erprobt werden die Verfahren, die sich noch im Experimentierstadium befinden, derzeit in der Diagnostik von Krebserkrankungen und bei der Kontrolle von Gentherapien. Denn hilfreich sind solche Verfahren generell in allen Bereichen, in denen zelluläre Veränderungen möglichst frühzeitig entdeckt werden müssen. Das molekulare Imaging gehört zu den Themenschwerpunkten des 83. Deutschen Röntgenkongresses in Wiesbaden.

Krankhaft veränderte Zellen haben veränderte Stoffwechsel- und Genaktivitäten. Ebenso bilden sie häufig Eiweißstrukturen - etwa Rezeptoren - auf ihrer Oberfläche, die gesunden Zellen fehlen. Diese Abweichungen machen sich Forscher bei der molekularen Bildgebung (Molecular Imaging) zunutze. Dazu koppeln sie ein Signalmolekül, das von einem bildgebenden Verfahren erkannt werden kann, mit einem anderen Molekül, das sich hochspezifisch mit bestimmten veränderten Zellstrukturen verbindet. Die Verbindung aus Signalmolekül und "Erkennungsmolekül", bei dem es sich um den Liganden eines Rezeptors oder um das Substrat eines Enzyms handeln kann, wird "Diagnostikum" genannt.
Um Stoffwechselvorgänge in Zellen sichtbar zu machen, stehen auch heute schon nuklearmedizinische Methoden zur Verfügung: die Positronen-Emissions- Tomographie (PET) und die Single Photon Emission Tomographie (SPECT). Diese Verfahren liefern jedoch nur geringe morphologische Informationen. Darum haben die Ärzte bisweilen Probleme, eine Region mit erhöhter Stoffwechselaktivität im Körper exakt zu lokalisieren. Daher überprüfen Radiologen derzeit, ob die Magnetresonanz-Tomographie (MRT) sowie andere, optische Verfahren bei der molekularen Bildgebung bessere Einsichten liefern können.
"Wegen ihres hohen räumlichen Auflösungsvermögens und des hohen Weichteilkontrasts wird derzeit die MRT als bildgebendes Verfahren favorisiert", erklärt Professor Wolfhard Semmler von der Abteilung für Biophysik und medizinische Strahlenphysik des Deutschen Krebsforschungszentrum in Heidelberg. Im Gegensatz zu PET und SPECT, die im wesentlichen Stoffwechselvorgänge sichtbar machen, können Radiologen mit der MRT auch Gewebestrukturen und morphologische Veränderungen sehr gut darstellen. Hinzu kommt, dass Patienten bei einer Untersuchung mit dem MRT nicht mit radioaktiver Strahlung belastet werden.
Probleme bereitet den Radiologen allerdings die geringe physikalische Nachweisempfindlichkeit der MRT. "Wir benötigen derzeit noch sehr hohe Konzentrationen des Signalmoleküls in den Zielregionen, um überhaupt ein bildgebendes Signal zu erhalten", sagt Semmler. Darum testen die Forscher derzeit beispielsweise, ob weiße Blutkörperchen, die mit Eisenoxydpartikeln magnetisch markiert wurden, das Problem zumindest in einigen Bereichen lösen können. Wenn sich diese Zellen - etwa bei einer Entzündung - im Gewebe anreichern und sammeln, können sie mit der MRT nachgewiesen werden. Darüber hinaus suchen die Wissenschaftler nach Signal- und Erkennungsmolekülen, die für das jeweilige bildgebende Verfahren besonders gut geeignet sind.
Doch damit nicht genug: Das Diagnostikum muss auch eine hohe Affinität zu den jeweiligen Rezeptoren oder auch Stoffwechselprodukten der veränderten Zelle haben. Ebenso muss es Transportbarrieren überwinden können. "Soll das Diagnostikum beispielsweise veränderte Zellen im Gehirn aufspüren, muss es die Blut-Hirn-Schranke überwinden können", sagt Semmler. Daher überprüfen die Radiologen derzeit die Einsatzmöglichkeiten verschiedener Molekülverbindungen im Experiment.
Auch neue optisch-bildgebende Verfahren stehen auf dem Prüfstand der Radiologen. Eines davon ist die so genannte Nah-Infrarot-Bildgebung, bei der kurzwelliges und für das menschliche Auge unsichtbares Infrarotlicht bis in den Bereich von wenigen Zentimetern tief in Gewebe vordringen kann. Seine Verteilung ermöglicht den Forschern beispielsweise, verschiedene Gewebsarten, etwa zur Tumordiagnostik, zu unterscheiden.

Rückfragen an:
Prof Dr. med. Dr. rer. nat. Dipl.-Phys. Wolfhard Semmler
Abt. für Biophysik und medizinische Strahlenphysik
Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
Im Neuenheimer Feld 290
69120 Heidelberg
Tel.: 06221-42 25 50
Fax: 06221-42 26 13
E-Mail: wolfhard.semmler@dkfz.de

Dipl. Biol. Barbara Ritzert | idw
Weitere Informationen:
http://www.drg.de/

Weitere Berichte zu: MRT Rezeptor Signalmolekül

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

nachricht Ein neuer Ansatz bei Hyperinsulinismus
18.09.2017 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie