Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Bildgebung: krankhafte Veränderungen von Zellen sichtbar machen

07.05.2002


Mit bildgebenden Verfahren, etwa der Magnetresonanz-Tomographie, lassen sich biologische Prozesse auf zellulärer Ebene sichtbar machen. Wissenschaftlich erprobt werden die Verfahren, die sich noch im Experimentierstadium befinden, derzeit in der Diagnostik von Krebserkrankungen und bei der Kontrolle von Gentherapien. Denn hilfreich sind solche Verfahren generell in allen Bereichen, in denen zelluläre Veränderungen möglichst frühzeitig entdeckt werden müssen. Das molekulare Imaging gehört zu den Themenschwerpunkten des 83. Deutschen Röntgenkongresses in Wiesbaden.

Krankhaft veränderte Zellen haben veränderte Stoffwechsel- und Genaktivitäten. Ebenso bilden sie häufig Eiweißstrukturen - etwa Rezeptoren - auf ihrer Oberfläche, die gesunden Zellen fehlen. Diese Abweichungen machen sich Forscher bei der molekularen Bildgebung (Molecular Imaging) zunutze. Dazu koppeln sie ein Signalmolekül, das von einem bildgebenden Verfahren erkannt werden kann, mit einem anderen Molekül, das sich hochspezifisch mit bestimmten veränderten Zellstrukturen verbindet. Die Verbindung aus Signalmolekül und "Erkennungsmolekül", bei dem es sich um den Liganden eines Rezeptors oder um das Substrat eines Enzyms handeln kann, wird "Diagnostikum" genannt.
Um Stoffwechselvorgänge in Zellen sichtbar zu machen, stehen auch heute schon nuklearmedizinische Methoden zur Verfügung: die Positronen-Emissions- Tomographie (PET) und die Single Photon Emission Tomographie (SPECT). Diese Verfahren liefern jedoch nur geringe morphologische Informationen. Darum haben die Ärzte bisweilen Probleme, eine Region mit erhöhter Stoffwechselaktivität im Körper exakt zu lokalisieren. Daher überprüfen Radiologen derzeit, ob die Magnetresonanz-Tomographie (MRT) sowie andere, optische Verfahren bei der molekularen Bildgebung bessere Einsichten liefern können.
"Wegen ihres hohen räumlichen Auflösungsvermögens und des hohen Weichteilkontrasts wird derzeit die MRT als bildgebendes Verfahren favorisiert", erklärt Professor Wolfhard Semmler von der Abteilung für Biophysik und medizinische Strahlenphysik des Deutschen Krebsforschungszentrum in Heidelberg. Im Gegensatz zu PET und SPECT, die im wesentlichen Stoffwechselvorgänge sichtbar machen, können Radiologen mit der MRT auch Gewebestrukturen und morphologische Veränderungen sehr gut darstellen. Hinzu kommt, dass Patienten bei einer Untersuchung mit dem MRT nicht mit radioaktiver Strahlung belastet werden.
Probleme bereitet den Radiologen allerdings die geringe physikalische Nachweisempfindlichkeit der MRT. "Wir benötigen derzeit noch sehr hohe Konzentrationen des Signalmoleküls in den Zielregionen, um überhaupt ein bildgebendes Signal zu erhalten", sagt Semmler. Darum testen die Forscher derzeit beispielsweise, ob weiße Blutkörperchen, die mit Eisenoxydpartikeln magnetisch markiert wurden, das Problem zumindest in einigen Bereichen lösen können. Wenn sich diese Zellen - etwa bei einer Entzündung - im Gewebe anreichern und sammeln, können sie mit der MRT nachgewiesen werden. Darüber hinaus suchen die Wissenschaftler nach Signal- und Erkennungsmolekülen, die für das jeweilige bildgebende Verfahren besonders gut geeignet sind.
Doch damit nicht genug: Das Diagnostikum muss auch eine hohe Affinität zu den jeweiligen Rezeptoren oder auch Stoffwechselprodukten der veränderten Zelle haben. Ebenso muss es Transportbarrieren überwinden können. "Soll das Diagnostikum beispielsweise veränderte Zellen im Gehirn aufspüren, muss es die Blut-Hirn-Schranke überwinden können", sagt Semmler. Daher überprüfen die Radiologen derzeit die Einsatzmöglichkeiten verschiedener Molekülverbindungen im Experiment.
Auch neue optisch-bildgebende Verfahren stehen auf dem Prüfstand der Radiologen. Eines davon ist die so genannte Nah-Infrarot-Bildgebung, bei der kurzwelliges und für das menschliche Auge unsichtbares Infrarotlicht bis in den Bereich von wenigen Zentimetern tief in Gewebe vordringen kann. Seine Verteilung ermöglicht den Forschern beispielsweise, verschiedene Gewebsarten, etwa zur Tumordiagnostik, zu unterscheiden.

Rückfragen an:
Prof Dr. med. Dr. rer. nat. Dipl.-Phys. Wolfhard Semmler
Abt. für Biophysik und medizinische Strahlenphysik
Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
Im Neuenheimer Feld 290
69120 Heidelberg
Tel.: 06221-42 25 50
Fax: 06221-42 26 13
E-Mail: wolfhard.semmler@dkfz.de

Dipl. Biol. Barbara Ritzert | idw
Weitere Informationen:
http://www.drg.de/

Weitere Berichte zu: MRT Rezeptor Signalmolekül

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

nachricht Vorhersage entlastet das Gehirn
13.01.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik