Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harnblasenkrebs mit Licht bekämpfen

23.08.2000


Harnblasenkrebs mit Licht bekämpfen
Deutsche Krebshilfe fördert Studie zur photodynamischen Therapie

Regensburg/München - Oberflächlicher Harnblasenkrebs ist schwer zu therapieren: Die Tumoren wachsen an vielen verschiedenen Stellen der Blasenwand. Deshalb kann nur eine Behandlung helfen, welche die gesamte Blasenschleimhaut erfasst. Bei der so genannten photodynamischen Therapie (PDT) wird ein lichtsensibler Stoff verabreicht, der sich selektiv im Tumorgewebe der Harnblase anreichert. Nach einer Bestrahlung mit rotem Licht entfaltet sich in den Tumorzellen eine gewebezerstörende Wirkung. Das bösartige Gewebe eliminiert sich damit sozusagen von selbst. Wissenschaftler aus München und Regensburg wollen die Therapie optimieren, die Wirkmechanismen untersuchen und die neuen Erkenntnisse in klinischen Studien anwenden. Die Deutsche Krebshilfe unterstützt das Projekt über einen Zeitraum von drei Jahren mit knapp 800.000 Mark.

Jährlich erkranken 15.000 Menschen an Blasenkrebs. Betroffen sind überwiegend Männer zwischen 60 und 80 Jahren. 70 bis 80 Prozent der Patienten leiden an oberflächlichen Harnblasentumoren, die an vielen verschiedenen Stellen der Schleimhaut wachsen. Als Alternative zur Blasenentfernung verspricht nur eine Behandlung der gesamten Blasenschleimhaut eine Chance auf Heilung: Gegenwärtig werden zu diesem Zweck Chemo- oder Immuntherapeutika in die Harnblase eingespült. Doch diese Therapie ist kostenintensiv, nebenwirkungsreich und langwierig.

Auch mit Hilfe der so genannten photodynamischen Therapie können oberflächliche Blasentumore behandelt werden. Zunächst wird ein lichtsensibler Stoff verabreicht, der sich im Tumorgewebe - in diesem Fall in der Harnblase - anreichert. Mit Hilfe eines Blasenkatheters wird eine spezielle Lichtquelle in die Blase eingeführt. Diese aktiviert die lichtsensitive Substanz. Die Energie des lichtempfindlichen Stoffes überträgt sich auf Sauerstoffmoleküle in der Tumorzelle. Hierdurch wird hochreaktiver Sauerstoff erzeugt, der lebensnotwendige Strukturen der Zellen und letztendlich den kompletten Tumor zerstört.

Die erste Generation therapeutisch einzusetzender lichtsensitiver Substanzen scheiterte in klinischen Studien: Die synthetisch hergestellten Stoffe lagerten sich nicht nur im bösartigen Blasengewebe, sondern auch im Blasenmuskel und in der Haut ein und führten daher zu starken Nebenwirkungen. Die zweite Generation photodynamischer Therapeutika ist dagegen vielversprechend: In klinischen Studien werden mittlerweile Ausgangsprodukte von körpereigenen Stoffen eingesetzt, welche die Herstellung von lichtempfindlichen Substanzen (Porphyrine) speziell in Tumorzellen anregen. Professor Dr. Ruth Knüchel-Clarke vom Institut für Pathologie der Universität Regensburg, Privatdozent Dr. Martin Kriegmair und Dr. Reinhold Baumgartner, beide von der Urologischen Klinik der Universität München, untersuchen das Ausgangsprodukt Aminolävulinsäure als photodynamisches Therapeutikum. Dr. Kriegmair schildert die Ergebnisse einer klinischen Pilotstudie: "Nach der Behandlung von zehn Blasenkrebspatienten, bei denen alle herkömmlichen organerhaltenden Maßnahmen versagt hatten, konnte die Effektivität der Tumorzerstörung mit Aminolävulinsäure bewiesen werden. Wir haben keine schwerwiegenden Nebenwirkungen beobachtet."

Die Wissenschaftler haben sich zum Ziel gesetzt, die Therapie mit Aminolävulinsäure dahingehend zu optimieren, dass ein breiter klinischer Einsatz möglich wird. Die Deutsche Krebshilfe unterstützt dieses Anliegen. Als Alternative zum Laserlicht wurde bereits eine neue, kostengünstige Lichtquelle zur Aktivierung der lichtempfindlichen Substanzen entwickelt. Die technischen Konzepte zur Ausleuchtung der Harnblase mit weißem Licht dieser Speziallampe liegen vor und befinden sich bereits in der klinischen Erprobung. Untersuchungen, die Aufschluss darüber geben sollen, welche Bestrahlungshäufigkeiten den besten Behandlungserfolg erwarten lassen, laufen derzeit. Außerdem widmen sich die Wissenschaftler den zellulären Wirkmechanismen der photodynamischen Therapie mit Aminolävulinsäure. "Die neuen Erkenntnisse sollen in verschiedenen klinischen Studien umgesetzt werden. Letztlich soll die optimierte photodynamische Therapie des oberflächlichen Harnblasenkrebs mit den herkömmlichen chemo- und immuntherapeutischen Behandlungsmethoden hinsichtlich Therapieerfolg und Kosten verglichen werden", so Professor Knüchel-Clarke.

Interviewpartner und Fotos auf Anfrage!

Projekt-Nummer: 70-2200

Weitere Informationen finden Sie im WWW:

Dr. med. Eva M. Kalbheim-Gapp |

Weitere Berichte zu: Aminolävulinsäure Harnblase Harnblasenkrebs Tumorzelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Makula-Degeneration – Deutschlands häufigste Augenerkrankung braucht mehr Aufmerksamkeit
30.05.2017 | Deutsche Ophthalmologische Gesellschaft

nachricht Sind Epilepsie-Patienten wetterfühlig?
23.05.2017 | Universitätsklinikum Jena

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie