Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reparatur-Anleitung für zerstörtes Gewebe im Kopf-Hals Bereich

06.05.2002


Patienten mit Erkrankungen im Hals-Kopf-Bereich werden, so hoffen die Forscher, in Zukunft von den vielfältigen Möglichkeiten der modernen Regenerationsmedizin zu profitieren. Über deren Einsatzmöglichkeiten und Stand diskutieren Experten vom 8. bis 12. Mai auf der 73. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie in Baden Baden.

In Deutschland erkranken jährlich etwa 13.000 Menschen an Karzinomen in der Kopf- und Halsregion. Insbesondere Tumoroperationen im Gesichtsbereich machen anschließend in den meisten Fällen umfangreiche funktionelle und ästhetische Rekonstruktionen erforderlich. "Der ursprüngliche Zustand lässt sich trotz der Fortschritte in der plastisch-rekonstruktiven Chirurgie oft nicht wieder herstellen", sagt Dr. med. Hubert Löwenheim, Oberarzt an der Universitäts-Hals-Nasen-Ohrenklinik in Tübingen. "Wir versuchen daher, die körpereigenen Regenerationsmechanismen zu aktivieren, um fehlendes Gewebe möglichst vollständig zu ersetzen."

Möglich ist dies beispielsweise durch den Einsatz körpereigener Stammzellen oder durch die Stimulation der Zellteilung mit Hilfe von Wachstumsfaktoren. Auch Biomaterialien, die Wissenschaftler außerhalb des Körpers mit Zellen besiedeln, können die Funktion zerstörten oder fehlenden Gewebes übernehmen. Als Ersatz für körpereigenes Knochengewebe eignen sich zum Beispiel biokompatible Materialien wie Hydroxylapatit oder Tricalciumphosphat, die in den verbleibenden Knochen implantiert werden. "Vorläuferzellen, aus denen sich Knochenzellen entwickeln, können dieses Trägermaterial anschließend besiedeln und neues Gewebe bilden", berichtet Löwenheim.

Um die Neubesiedlung der Trägermaterialien zu verbessern, werden inzwischen auch Wachstumsfaktoren, so genannte Bone morphogenetic proteins (BMPs), zur Regeneration von Knochengewebe eingesetzt. "Diese Proteine", so Löwenheim "können undifferenzierte Stammzellen aus dem Knochenmark dazu bringen, sich zu Knochenzellen zu differenzieren und auf dem Trägermaterial neues Knochengewebe zu bilden."

Auch auf dem Gebiet der Knorpelregeneration ist die Forschung schon sehr weit vorangeschritten: In der Zellkultur besiedeln Forscher biokompatible Trägermaterialien mit Knorpelzellen und können so auch komplexe Strukturen wie Ohrmuscheln entstehen lassen. Transplantationsversuche mit derart rekonstruierten Ohrmuscheln sind bisher jedoch fehlgeschlagen, weil der Körper das Gewebe innerhalb mehrerer Wochen resorbiert. "Man sucht deshalb derzeit noch nach geeigneten Trägermaterialien und Wachstumsfaktoren, um die Regeneration der Knorpelstrukturen zu optimieren", so Löwenheim.
Im Stadium der Grundlagenforschung befindet sich derzeit die Erforschung der Regeneration von Sinneszellen im Kopf-Hals-Bereich. "Insbesondere in die Erneuerung der Haarzellen und der Spiralganglienzellen im Innenohr setzen wir aber große Hoffnungen", sagt Löwenheim. Da Experten allein in Deutschland von bis zu 12 Millionen Menschen mit Innenohrschwerhörigkeit ausgehen, ist dieser Ansatz von großer Bedeutung. Hinzu komme, sagt Löwenheim, "dass in Zukunft etwa zehn Prozent der jungen Generation aufgrund der zunehmenden Freitzeitlärmbelastung von Schwerhörigkeit betroffen sein werden."

Die ersten Untersuchungen auf dem Weg zur Haarzell-Regeneration zeigen viel versprechende Ergebnisse: Mediziner konnten bereits mehrere Faktoren identifizieren, die die Differenzierung von Vorläuferzellen, den so genannten Stützzellen, zu Haarzellen steuern. "Wir haben in unserer Arbeitsgruppe beispielsweise das Molekül p27 gefunden, dass bei der Teilung der Stützzellen quasi als Bremse funktioniert", berichtet Löwenheim. Indem sie das Molekül hemmten, konnten die Mediziner die Zellen wieder zur Teilung bringen. Einen Differenzierungsfaktor, der die Umwandlung der Stützzellen zu Haarzellen steuert, haben Forscher ebenfalls bereits identifiziert. "Wir kennen allerdings bisher nur einzelne Bausteine, aus denen sich der Regenerationsprozess zusammensetzt," so Löwenheim. "Diese müssen wir erst zu einem Gesamtbild zusammenfügen, um Patienten in Zukunft die ursprüngliche Hörfähigkeit wiederzugeben."

Rückfragen an:
Dr. med. Hubert Löwenheim
Universitäts-Hals-Nasen-Ohrenklinik
Elfriede-Aulhorn Str. 5
72076 Tübingen
Tel.: 07071 / 2988-088
Fax.: 07071 / 2933-11
E-Mail: hubert.loewenheim@uni-tuebingen.de

Dipl. Biol. Barbara Ritzert | idw
Weitere Informationen:
http://www.hno.org/

Weitere Berichte zu: Gewebe Knochengewebe Stützzelle Trägermaterial

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie