Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltneuheit: Uni Bonn erhält Hochleistungs-Tomographiesystem

06.05.2002


Montage des neuen Tomographen.
Foto: AG Professor Schild


Der 3T-Tomograph.
Foto: Frank Luerweg


Ein ultramodernes Diagnosesystem wurde am 03.05.2002 an der Radiologischen Klinik der Universität Bonn in Betrieb genommen: Der weltweit erste Typ eines neuartigen Hochfeld-Magnetresonanz-Tomographen, der sowohl für die klinische Anwendung am Patienten als auch für die klinische und grundlagenorientierte Forschung völlig neue Möglichkeiten eröffnet. Der Philips-Konzern hat der Universität das mehrere Millionen Euro teure Gerät zur Verfügung gestellt; die Radiologische Klinik hatte sich dabei gegen Mitbewerber aus den USA, Japan und Europa durchgesetzt.

"Mit der Hochfeld-Magnetresonanz-Tomographie werden sich unsere diagnostischen Möglichkeiten deutlich erweitern", erklärt der Direktor der Radiologischen Universitätsklinik, Professor Dr. Hans Schild. Bereits heute gelten Magnetresonanz- oder Kernspin-Tomographen als das "Non-plusultra" der medizinischen Diagnostik. Ohne Strahlenbelastung ermöglichen sie den Blick ins Körper-innere. Dadurch können Radiologen Erkrankungen praktisch sämtlicher Körperteile sehr früh und sehr genau erkennen - in der Regel besser als mit allen anderen Untersuchungsverfahren wie beispielsweise Ultraschall, Röntgen oder Katheteruntersuchungen. Auch auf diffizile Fragen geben die Tomographie-Daten Antworten: So hilft die MR-Tomographie bei der Planung von Tumoroperationen, sie lässt erkennen, wo im Gehirn das Sprachzentrum liegt, ob die Herzkranzgefäße verengt sind und wie sich das beheben lässt.

Das neuartige 3-Tesla-Hochfeld-System, das in diesen Wochen auf dem Bonner Venusberg installiert wird und mit besonders starken Magnetfeldern arbeitet, kann jedoch weit mehr. "Durch das Gerät werden nicht nur bestehende Untersuchungstechniken verbessert; wir erwarten vielmehr, dass sich auch fundamental neue diagnostische Ansätze realisieren lassen", ist die Radiologin Dr. Christiane Kuhl überzeugt. Nicht nur im klinischen Bereich, etwa bei der Früherkennung von Krebserkrankungen wie Brustkrebs, eines drohenden Herzinfarktes oder von neurologischen Erkrankungen wie Schlaganfall oder Multiple Sklerose, rechnet die Medizinerin mit deutlichen Fortschritten. "Auch für die patientennahe Grundlagenforschung, beispielsweise die Untersuchung der Funktionsweise des Gehirns zur Verbesserung der Epilepsie- und Schlaganfallbehandlung, wird die Ultra-Hochfeld-Technologie einen großen Schritt vorwärts bedeuten."

Ein weiterer wesentlicher Forschungsbereich, der mit der neuen Technologie erstmals zugänglich wird, ist das "Molecular Imaging". Dabei markieren die Wissenschaftler pharmakologisch wirksame Moleküle und verfolgen ihre Verteilung direkt im lebenden Organismus, also nicht nur wie bisher in Zellkulturen. Wichtig sind derartige Methoden beispielsweise für die Stammzellforschung, da die Forscher so kontrollieren können, ob die implantierten Stammzellen auch wirklich in das gewünschte Gewebe einwandern und dort gegebenenfalls kranke Zellen ersetzen. "Wir erhoffen uns, dass auf diese Weise zukünftig die Effektivität gentechnologischer Therapieansätze innerhalb kürzerer Zeit kontrolliert und Nebenwirkungen oder Komplikationen so früh wie möglich erkannt werden können", so Professor Schild.

Das nur mit Hochfeld-Magnetresonanz-Systemen mögliche "Molecular Imaging" kann somit dazu beitragen, die klinische Anwendung der Gentherapie sicherer zu machen und eine Gefährdung oder unnötige Belastung von Patienten zu vermeiden.

Grundsätzlich nutzt die Magnetresonanz-Tomographie die Tatsache, dass Atomkerne - beispielsweise die zahlreichen Wasserstoff-Kerne im menschlichen Körper - gewissermaßen winzige Magneten darstellen. Der Tomograph erzeugt um den Körper ein hohes magnetisches Feld, in dem sich die Miniatur-Magneten wie Kompassnadeln ausrichten - und zwar umso mehr, je stärker das äußere Magnetfeld ist. Mit einem Radiowellen-Impuls (mit etwa vergleichbarer Frequenz wie das UKW-Radio) werden die "Kompassnadeln" teilweise aus der Richtung "gestoßen". Wird der Radiowellen-Impuls abgeschaltet, so richten sich die "Kompassnadeln" wieder mit dem Magnetfeld aus. Diese Umorientierung ist stoff- bzw. gewebsspezifisch und kann durch den Tomographen gemessen werden; aus diesen Messdaten kann dann ein Bild des Körperinneren rekonstruiert werden. Je höher das äußere Magnetfeld, desto genauer die Messdaten. Die supraleitenden Magnetspulen des neuen Tomographen können ein Feld von drei Tesla erzeugen - üblich sind bislang maximal eineinhalb Tesla.

Im Wettbewerb mit Einrichtungen und Universitäten aus den USA, Japan und Europa hatte sich die Radiologische Universitätsklinik so überzeugend positionieren können, dass die wissenschaftliche Leitung des Philips-Konzerns sich für Bonn als ersten Standort ihres mehrere Millionen Euro teuren Hochfeld-MR-Systems entschied. "Die Hochfeld-Technologie ergänzt in idealer Weise das aktuelle Profil der Universität Bonn und wird ihre Position als leistungsfähige, international wettbewerbsfähige Einrichtung im Life Science Bereich weiter stärken", betont der Radiologe Professor Schild.

Auch der Rektor der Universität Bonn, Professor Dr. Klaus Borchard, wertet die Entscheidung des Philips-Konzerns als ein deutliches Zeichen der Anerkennung: "Die Tatsache, dass sich die Bonner Alma mater gegen renommierte internationale Mitbewerber durchsetzen konnte, zeigt, dass sich die Universität den geänderten Erfordernissen der modernen Wissenschafts-Infrastruktur erfolgreich stellt. Mit dieser prestigeträchtigen Entscheidung für Bonn wird die Bedeutung der Universität und der Region als Wissenschaftsstandort auf eine noch bessere Basis gestellt."

Frank Luerweg | idw

Weitere Berichte zu: Magnetfeld Multiple Sklerose Tomograph

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Tropenviren bald auch in Europa? Bayreuther Forscher untersuchen Folgen des Klimawandels
21.06.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften