Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltneuheit: Uni Bonn erhält Hochleistungs-Tomographiesystem

06.05.2002


Montage des neuen Tomographen.
Foto: AG Professor Schild


Der 3T-Tomograph.
Foto: Frank Luerweg


Ein ultramodernes Diagnosesystem wurde am 03.05.2002 an der Radiologischen Klinik der Universität Bonn in Betrieb genommen: Der weltweit erste Typ eines neuartigen Hochfeld-Magnetresonanz-Tomographen, der sowohl für die klinische Anwendung am Patienten als auch für die klinische und grundlagenorientierte Forschung völlig neue Möglichkeiten eröffnet. Der Philips-Konzern hat der Universität das mehrere Millionen Euro teure Gerät zur Verfügung gestellt; die Radiologische Klinik hatte sich dabei gegen Mitbewerber aus den USA, Japan und Europa durchgesetzt.

"Mit der Hochfeld-Magnetresonanz-Tomographie werden sich unsere diagnostischen Möglichkeiten deutlich erweitern", erklärt der Direktor der Radiologischen Universitätsklinik, Professor Dr. Hans Schild. Bereits heute gelten Magnetresonanz- oder Kernspin-Tomographen als das "Non-plusultra" der medizinischen Diagnostik. Ohne Strahlenbelastung ermöglichen sie den Blick ins Körper-innere. Dadurch können Radiologen Erkrankungen praktisch sämtlicher Körperteile sehr früh und sehr genau erkennen - in der Regel besser als mit allen anderen Untersuchungsverfahren wie beispielsweise Ultraschall, Röntgen oder Katheteruntersuchungen. Auch auf diffizile Fragen geben die Tomographie-Daten Antworten: So hilft die MR-Tomographie bei der Planung von Tumoroperationen, sie lässt erkennen, wo im Gehirn das Sprachzentrum liegt, ob die Herzkranzgefäße verengt sind und wie sich das beheben lässt.

Das neuartige 3-Tesla-Hochfeld-System, das in diesen Wochen auf dem Bonner Venusberg installiert wird und mit besonders starken Magnetfeldern arbeitet, kann jedoch weit mehr. "Durch das Gerät werden nicht nur bestehende Untersuchungstechniken verbessert; wir erwarten vielmehr, dass sich auch fundamental neue diagnostische Ansätze realisieren lassen", ist die Radiologin Dr. Christiane Kuhl überzeugt. Nicht nur im klinischen Bereich, etwa bei der Früherkennung von Krebserkrankungen wie Brustkrebs, eines drohenden Herzinfarktes oder von neurologischen Erkrankungen wie Schlaganfall oder Multiple Sklerose, rechnet die Medizinerin mit deutlichen Fortschritten. "Auch für die patientennahe Grundlagenforschung, beispielsweise die Untersuchung der Funktionsweise des Gehirns zur Verbesserung der Epilepsie- und Schlaganfallbehandlung, wird die Ultra-Hochfeld-Technologie einen großen Schritt vorwärts bedeuten."

Ein weiterer wesentlicher Forschungsbereich, der mit der neuen Technologie erstmals zugänglich wird, ist das "Molecular Imaging". Dabei markieren die Wissenschaftler pharmakologisch wirksame Moleküle und verfolgen ihre Verteilung direkt im lebenden Organismus, also nicht nur wie bisher in Zellkulturen. Wichtig sind derartige Methoden beispielsweise für die Stammzellforschung, da die Forscher so kontrollieren können, ob die implantierten Stammzellen auch wirklich in das gewünschte Gewebe einwandern und dort gegebenenfalls kranke Zellen ersetzen. "Wir erhoffen uns, dass auf diese Weise zukünftig die Effektivität gentechnologischer Therapieansätze innerhalb kürzerer Zeit kontrolliert und Nebenwirkungen oder Komplikationen so früh wie möglich erkannt werden können", so Professor Schild.

Das nur mit Hochfeld-Magnetresonanz-Systemen mögliche "Molecular Imaging" kann somit dazu beitragen, die klinische Anwendung der Gentherapie sicherer zu machen und eine Gefährdung oder unnötige Belastung von Patienten zu vermeiden.

Grundsätzlich nutzt die Magnetresonanz-Tomographie die Tatsache, dass Atomkerne - beispielsweise die zahlreichen Wasserstoff-Kerne im menschlichen Körper - gewissermaßen winzige Magneten darstellen. Der Tomograph erzeugt um den Körper ein hohes magnetisches Feld, in dem sich die Miniatur-Magneten wie Kompassnadeln ausrichten - und zwar umso mehr, je stärker das äußere Magnetfeld ist. Mit einem Radiowellen-Impuls (mit etwa vergleichbarer Frequenz wie das UKW-Radio) werden die "Kompassnadeln" teilweise aus der Richtung "gestoßen". Wird der Radiowellen-Impuls abgeschaltet, so richten sich die "Kompassnadeln" wieder mit dem Magnetfeld aus. Diese Umorientierung ist stoff- bzw. gewebsspezifisch und kann durch den Tomographen gemessen werden; aus diesen Messdaten kann dann ein Bild des Körperinneren rekonstruiert werden. Je höher das äußere Magnetfeld, desto genauer die Messdaten. Die supraleitenden Magnetspulen des neuen Tomographen können ein Feld von drei Tesla erzeugen - üblich sind bislang maximal eineinhalb Tesla.

Im Wettbewerb mit Einrichtungen und Universitäten aus den USA, Japan und Europa hatte sich die Radiologische Universitätsklinik so überzeugend positionieren können, dass die wissenschaftliche Leitung des Philips-Konzerns sich für Bonn als ersten Standort ihres mehrere Millionen Euro teuren Hochfeld-MR-Systems entschied. "Die Hochfeld-Technologie ergänzt in idealer Weise das aktuelle Profil der Universität Bonn und wird ihre Position als leistungsfähige, international wettbewerbsfähige Einrichtung im Life Science Bereich weiter stärken", betont der Radiologe Professor Schild.

Auch der Rektor der Universität Bonn, Professor Dr. Klaus Borchard, wertet die Entscheidung des Philips-Konzerns als ein deutliches Zeichen der Anerkennung: "Die Tatsache, dass sich die Bonner Alma mater gegen renommierte internationale Mitbewerber durchsetzen konnte, zeigt, dass sich die Universität den geänderten Erfordernissen der modernen Wissenschafts-Infrastruktur erfolgreich stellt. Mit dieser prestigeträchtigen Entscheidung für Bonn wird die Bedeutung der Universität und der Region als Wissenschaftsstandort auf eine noch bessere Basis gestellt."

Frank Luerweg | idw

Weitere Berichte zu: Magnetfeld Multiple Sklerose Tomograph

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt
18.10.2017 | Universität Bern

nachricht Aromatherapie bei COPD
12.05.2015 | Airnergy AG

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Seminar zur angewandten Versuchsmethodik und Lebensdauererprobung

18.10.2017 | Seminare Workshops

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungsnachrichten

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie