Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsforschung: Das Protein p53 in der medizinischen Diagnostik

17.11.2000


In den ersten zehn Jahren nach seiner Entdeckung (1979) galt das Protein p53 als Onkogen. Schnell wurde jedoch klar, dass p53 - anstatt Tumore zu verursachen - die Zelle vor bösartigen Veränderungen schützt.

Wie sich das Kontrollgen in der medizinischen Diagnostik und Therapie einsetzen lässt, wird seit rund 20 Jahren weltweit erforscht. Von besonderem Interesse sind hierbei auch die gegen p53 gebildeten Autoantikörper. Sie dienen als Indikator für Erkrankungen, die ,wie beispielsweise Krebs, aufgrund von unkontrolliertem Zellwachstum entstehen.

Mathias Montenarh, Professor am Lehrstuhl für Medizinische Biochemie und Molekularbiologie der Saar-Uni, beschäftigt sich seit mehr als 20 Jahren mit p53, unter anderem auch im Sonderforschungsbereich 399 "Molekularpathologie der Proliferation". In seinem Artikel "p53 Autoantikörper in der klinischen Diagnostik" (Deutsche Medizinische Wochenschrift, Nr. 31/32 2000) fasst Montenarh die Ergebnisse zahlreicher Studien zusammen, die weltweit seit 1982 - dem Jahr der Entdeckung der p53 Autoantikörper - durchgeführt worden sind.

Zusammenfassung der Ergebnisse (Auszug):

· p53 Autoantikörper sind ein zuverlässiger Indikator für Tumorerkrankungen. Nahezu alle Patienten, bei denen p53 Autoantikörper festgestellt wurden, waren an einem bösartigen Tumor erkrankt.

· Im Vergleich zu konventionellen Methoden können bösartige Tumore unter Umständen (weil nicht jeder Patient Autoantikörper entwickelt) anhand einer Bestimmung von p53 Autoantikörpern sehr viel früher erkannt werden (z.B. bei Rauchern).

· Eine bestimmte Tumorerkrankung zu diagnostizieren, ist allein anhand einer Bestimmung der p53 Autoantikörper nicht möglich. Hierzu sind weitere Faktoren zu untersuchen.


· p53 Autoantikörper treten bei verschiedenen Tumorerkrankungen in unterschiedlicher Häufigkeit auf. So konnte beispielsweise in mehreren Studien festgestellt werden, dass bei bis zu 40 Prozent der Patienten mit Lungenkarzinom p53 Autoantikörper vorlagen. Im Gegensatz dazu waren jedoch nur bei 14 Prozent der Patienten mit Gehirntumoren p53 Autoantikörper nachweisbar.

· Die Bestimmung von p53 Autoantikörpern eignet sich vor allem bei schlecht diagnostizierbaren Tumoren (z.B. Lungentumore, Pankreastumore).

· Veränderungen von p53 werden untersucht, um Tumorerkrankungen frühzeitig zu erkennen und um für Patienten eine Prognose über den Krankheitsverlauf zu erstellen. Inwiefern sich anhand der Bestimmung von p53 Autoantikörpern Aussagen über den Erfolg einer Tumortherapie machen lassen wird allerdings kontrovers diskutiert.

· Methoden zur Bestimmung von p53 Autoantikörpern: Untersuchung des Blutserums anhand von ELISA-Testmethoden oder mit biochemischen Methoden
(Das Verfahren mit den ELISA -Testmethoden ist vergleichsweise schnell und für den Patienten unkompliziert. Es wird lediglich eine Blutprobe aber kein Tumormaterial benötigt. Derzeit werden drei unterschiedliche ELISA-Testmethoden für die Routinediagnostik angeboten.)

Quelle:
Montenarh, Mathias: p53 Autoantikörper in der klinischen Diagnostik. In:
Deutsche Medizinische Wochenschrift 125 (2000), Nr. 31/32, S. 941 - 943.


Das Presse- und Informationszentrum stellt Ihnen den Artikel gern zur
Verfügung.


Kontakt für weitere Informationen:
Prof. Dr. Mathias Montenarh (Medizinische Biochemie und Molekularbiologie),
Tel.: 06841/16-6501, Fax: 06841/16-6027, E-Mail: tm13mm@rz.uni-sb.de

Tamara Weise | idw

Weitere Berichte zu: Autoantikörper Tumorerkrankung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics