Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Schmerz im Gehirn entsteht und kommuniziert wird

22.06.2007
Universität Jena erhält neue Forschergruppe für ihren neurowissenschaftlichen Schwerpunkt

Das Gefühl kennt jeder: Wenn der Finger verletzt wird, scheint er genau an der Stelle zu schmerzen, wo die Verwundung geschah. Der Schmerz scheint sich gefühlsmäßig draußen, d. h. außerhalb des Kopfes, abzuspielen. Doch dem ist nicht so: "Schmerz ist eine Konstruktion des Gehirns, d. h., er entsteht erst im Gehirn", benennt Prof. Dr. Wolfgang Miltner von der Universität Jena aktuelle Erkenntnisse. Damit ist Schmerz "in erster Linie ein psychologisches und kein rein neuro-physiologisches Ereignis". Im Gehirn wird Schmerz als Erfahrung gespeichert und wieder abgerufen - oder auch nicht, wie Jenaer Versuche unter Hypnose oder Ablenkung gezeigt haben. An der "Erfahrung Schmerz", so der Psychologe Miltner, sind ca. 20 Strukturen im Gehirn beteiligt, die gemeinsam in bestimmter Weise zusammenarbeiten müssen.

Doch wie diese komplexe Schmerzmatrix genau funktioniert und wie die Gehirnstrukturen miteinander kommunizieren, damit es ein Schmerzerleben gibt, ist bislang nur unzureichend bekannt. Dies soll nun eine neue Forschergruppe an der Friedrich-Schiller-Universität Jena aufklären, die das Bundesforschungsministerium (BMBF) jetzt bewilligt hat. Es stellt dafür in den kommenden drei Jahren zusätzlich über 1,1 Millionen Euro zur Verfügung. "Die Gruppe verbindet das bereits vorhandene wissenschaftliche und technische Potenzial an der Friedrich-Schiller-Universität und erweitert es", betont Sprecher Prof. Dr. Herbert Witte.

Neben seinem Institut für Medizinische Statistik, Informatik und Dokumentation sind Miltners Lehrstuhl für Biologische und Klinische Psychologie sowie die Professoren Jens Haueisen vom Biomagnetischen Zentrum und Jürgen Reichenbach von der Medizinischen Physik beteiligt. "Diese vier Einrichtungen, die seit Jahren auf dem Gebiet der ,Computational Neuroscience' ausgewiesen sind, tragen die neue Forschungsstruktur", erläutert Witte. Zur so genannten "Bernstein-Gruppe" werden am Ende die sechsköpfige Nachwuchsgruppe und mindestens weitere 16 Doktoranden und erfahrene Wissenschaftler sowie zusätzliches medizinisch-technisches Personal gehören. Am Kopf der Nachwuchsgruppe steht eine neue Professur für Computational Neuroscience/Biomagnetismus, die demnächst ausgeschrieben wird. "Das Forschungsgebiet der Computational Neuroscience verbindet Experiment, Datenanalyse, Computersimulation und Theoriebildung, um die hochkomplexen Strukturen und Funktionen sowie die Beziehungen zwischen Struktur und Funktion des Gehirns zu erforschen", erläutert Witte die neue Disziplin der computerunterstützten Neurowissenschaft.

... mehr zu:
»Neuroscience »Schmerz

"Die Gruppe wie die gesamte Forschungsstruktur wird auch nach der dreijährigen Förderung weitergeführt", betont Prof. Witte, der zugleich Prorektor für Forschung der Universität Jena ist. "Hier werden Partner zusammengebracht, die zu einem nachhaltigen Schwerpunkt vereinigt werden", freut sich auch Prof. Miltner.

Und diese Partner werden nun erforschen, wie die Schmerzsignale miteinander interagieren, in welcher zeitlichen Abfolge und wie die Signale zum Gehirn und im Gehirn versandt werden. Bildlich formuliert: Was passiert im Mega-Orchester der Neuronen, wenn wir plötzlich Schmerz verspüren? Welche Neuronen-Musiker spielen wann aufgrund welcher Informationen welche Töne und auf welchen Wegen werden diese übertragen? Dieses "Schmerz-Konzert" werden die Forscher der Universität Jena sowohl im gesunden als auch im kranken Körper, etwa bei rheumatischen oder entzündlichen Störungen, erforschen.

Dazu wird die Dynamik der Informationsübertragung in der Schmerzmatrix auf der Grundlage synchron erfasster Daten der funktionellen Magnetresonanztomographie (fMRT) und der Elektroenzephalographie (EEG) bzw. der Magnetenzephalographie (MEG) ermittelt - denn anders wäre dieses blitzartige Geschehen im Gehirn kaum analysierbar. "Dafür ist die Neuentwicklung von geeigneten Analysemethoden und dynamischen Modellierungsstrategien unumgänglich", nennt Prof. Witte einige Anforderungen. "Denn erst die Verbindung von hoch entwickelten funktionell-bildgebenden Verfahren mit neuen mathematischen Analyse- und Modellierungsmethoden wird zu einer signifikanten Weiterentwicklung zukunftsweisender Ergebnisse und Anwendungen auf dem Gebiet der Computational Neuroscience beitragen", ist sich der Medizininformatiker sicher. Und nur wenn die Grundlagen der Schmerzentstehung im Gehirn bekannt sind, können auch neue Konzepte der Schmerztherapie entwickelt und vielleicht manche unerträgliche Schmerzen gelindert werden.

Kontakt:
Prof. Dr. Herbert Witte
Institut für Medizinische Statistik, Informatik und Dokumentation der Universität Jena
Bachstr. 18, 07743 Jena
Tel.: 03641 / 933133
E-Mail: herbert.witte[at]mti.uni-jena.de
Prof. Dr. Wolfgang H. R. Miltner
Institut für Psychologie der Universität Jena
Am Steiger 3 / Haus 1, 07743 Jena
Tel.: 03641 / 945140
E-Mail: wolfgang.miltner[at]uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Neuroscience Schmerz

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sind Epilepsie-Patienten wetterfühlig?
23.05.2017 | Universitätsklinikum Jena

nachricht Dual-Layer Spektral-CT: Bessere Therapieplanung beim Bauchspeicheldrüsenkrebs
18.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie