Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumorschmerzen - Forschung für neue Therapieansätze

20.06.2007
Tumorpatienten leiden sehr oft unter chronischen Schmerzen, die insbesondere bei Infiltration peripherer Nerven und Destruktion der Knochen durch Knochenmetastasen schwer zu behandeln sind. Um diesen Patienten besser helfen zu können, werden neue therapeutische Angriffspunkte gesucht.
In einem von der Wilhelm Sander Stiftung geförderten Projekt analysiert das Forscherteam um Prof. Irmgard Tegeder und Prof. Jörn Lötsch die Bedeutung des Enzyms, GTP Cyclohydrolase, für die Manifestation für Tumorschmerzen. Durch die geplanten Untersuchungen soll geklärt werden, ob eine Modifikation der Aktivität dieses Enzyms zu neuen therapeutische Möglichkeiten führen kann.

Tumorschmerzen entstehen durch Infiltration, Kompression und Destruktion gesunden Gewebes. Insbesondere bei Schädigung von Nerven und Knochenmetastasen treten schwer behandelbare chronische Schmerzen auf, die die Lebensqualität betroffener Patienten erheblich beeinträchtigen.

Um mögliche neue Therapieansätze zu finden, haben wir untersucht, welche Gene nach einer Schädigung des Ischiasnerven in Dorsalganglien und Rückenmark der Ratte verstärkt oder vermindert gebildet werden. Unter zahlreichen Genen stach dabei eine Enzymkaskade besonders hervor, bei der mehrere hintereinander geschaltete Enzyme verstärkt gebildet wurden. Diese Enzymkaskade beginnt mit der GTP Cyclohydrolase und führt zur Bildung von Tetrahydrobiopterin (BH4).

BH4 ist ein Enzym-Hilfsfaktor, der für die Bildung von Botenstoffen des Nervensystems und Stickstoffmonoxid essentiell ist. Eine übermäßige Produktion von BH4 trägt jedoch zur Schmerzentwicklung bei. Die direkte Injektion von BH4 löst bei Nagern Schmerz-ähnliches Verhalten aus, dagegen führt die Normalisierung der BH4-Produktion zu wesentlicher Schmerzreduktion in verschiedenen neuropathischen und entzündlichen Schmerzmodellen.
... mehr zu:
»BH4 »Cyclohydrolase »GCH1 »GTP »Tumorschmerzen

Beim Menschen gibt es genetische Varianten des Gens, das für die GTP Cyclohydrolase (GCH1) kodiert. Eine bestimmte GCH1 Variante, die bei 2.5% der Menschen auf beiden Chromosomen und bei 25% der Menschen auf einem Chromosom vorkommt, vermindert chronische neuropathische Schwerden bei Bandscheibenleiden, und reduziert ebenfalls die Schmerzempfindlichkeit bei gesunden Freiwilligen in verschiedenen experimentellen Schmerztests. Träger dieser schmerzprotektiven Genvariante zeigen nach Stimulation im Vergleich zu Nicht-Trägern keine überschießende BH4 Produktion. Die physiologische Produktion ist dagegen normal, so dass mit dieser genetischen Variante keine Krankheitssymptome verbunden sind.

In einem Knochentumor-Modell bei der Maus untersuchen Prof. Tegeder und Prof. Lötsch nun die Rolle der GTP Cyclohydrolase und des Tetrahydrobiopterin für die Entstehung und Intensität von Tumorschmerzen sowie die molekularen Mechanismen, die bei dieser besonderen Schmerzform von Bedeutung sind.

Da eine Diagnose der GCH1 Variante beim Patienten helfen könnte, das individuelle Risiko für Tumorschmerzen einschätzen zu können, wird in Kooperation mit Frau Prof. Elke Jäger, Klinik für Onkologie und Hämatologie am Nordwestkrankernhaus Frankfurt am Main, untersucht, ob eine Assoziation zwischen GCH1 Varianten und Auftreten und Intensität der Tumorschmerzen besteht. Es könnte beispielsweise möglich sein, Patienten zu identifizieren, die aufgrund eines hohen individuellen Schmerzrisikos von frühzeitiger analgetischer Behandlung profitieren würden. Zudem scheint es denkbar, neue Analgetika zu entwickeln, die die Auswirkungen der genetischen GCH1 Variation nachahmen, d.h. bei schmerzhaftrer Stimulation eine exzessive BH4 Bildung in Nervenzellen verhindern, jedoch die physiologisch notwendige BH4 Produktion nicht beeinträchtigen.

Kontakt: Prof. Dr. Irmgard Tegeder, Frankfurt/M. und Jörn Lötsch
Institut für Klinische Pharmakologie / ZAFES
Klinikum der Johann Wolfgang Goethe Universität, Frankfurt am Main
Tel. +49 (69) 6301 7621 Fax: +49 (69) 6301 7636
e-mal: tegeder@em.uni-frankfurt.de
Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 185.000 €. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Berichte zu: BH4 Cyclohydrolase GCH1 GTP Tumorschmerzen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie

Kleinste Teilchen aus fernen Galaxien!

22.09.2017 | Physik Astronomie