Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebensretter identifiziert: Mechanismen der initialen Blutgerinnung aufgedeckt

14.05.2007
Physikern der TU München und der Universität Augsburg ist es gemeinsam mit Medizinern der Universität Münster gelungen, das Rätsel der initialen Blutgerinnung zu lösen. Die Zusammenarbeit liefert fundamental neue Einsichten, die Gefäßkrankheiten, wie z. B. die Arteriosklerose, in einem neuen, medizinisch-physikalischen Licht erscheinen lassen und die Grundlage zu neuartigen Therapieansätzen bilden werden. Dies verstärkt die Hoffnungen, die von-Willebrand-Erkrankung als häufigste Erbkrankheit therapieren zu können. Der Kooperation verschiedener Forscher in unterschiedlichen Disziplinen im Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) führte zu diesem Bahn brechenden Erfolg.

Bisher war auch nach Jahren intensiver Forschung die Blutgerinnung immer noch ein großes Rätsel der Medizin. Ausschlaggebend für den Verschluß von Verletzungen in Blutgefäßen ist die Aktivierung des von-Willebrand-Faktors (vWF), eines Proteins, das als Trägerprotein eine wichtige Rolle bei der Blutstillung spielt. Ohne diese Funktion würde auch die kleinste äußere Verletzung unweigerlich zum Tode durch Verbluten führen.

Der vWF wird von den Endothelzellen gebildet, die die Innenwand eines Blutgefäßes (die Intima) bilden. Kommt es zu einem Riss dieser Innenwand, werden die darunter liegenden Proteine der Gefäßwand freigelegt. An diese kann der von-Willebrand-Faktor binden. Bestimmte zelluläre Elemente des Blutes, die Blutplättchen (Thrombozyten), verfügen auf ihrer Oberfläche über eine Andockstelle, an die der von-Willebrand-Faktor binden kann. Der vWF schafft also eine Brücke zwischen den Blutplättchen und der verletzten Gefäßwand. Doch die Frage, wie es zur Anheftung an die Gefäßwand kommt und damit zum Verschluß einer Verletzung, blieb bislang ungeklärt.

Darüber hinaus lassen Untersuchungen erkennen, dass die Anhaftung bei hohen Strömungsgeschwindigkeiten effektiver funktionierte als bei niedrigen - für den menschlichen Organismus absolut lebensnotwendig, denn durch den im Herzen erzeugten Blutdruck wird gerade in kleineren Gefäßen - z. B. in den Arteriolen - eine weitaus höhere Scherrate als in großen Gefäßen erzeugt. Diese hohe Scherrate setzt Gefäßwände einer hohen mechanischen Belastung aus, die die Bildung von Verletzungen und Rissen begünstigt. Tatsächlich ist der vWF gerade dort besonders "fleißig" und effektiv. Das Rätsel, weshalb der vWF gerade bei hohen Strömungsgeschwindigkeiten besonders effektiv wirkt, scheint nun gelöst

Der vWF als "mechanisch schaltbares" Molekül

Bisherige Untersuchungen stellten enzymatische und biochemische Aspekte in ihr Zentrum. Offensichtlich sind bei der Aktivierung des vWF aber mechanische Kräfte am Werk, große Scherkräfte nämlich, die bei hohen Strömungsgeschwindigkeiten - also unter Bedingungen, wie sie in den Arteriolen des menschlichen Blutkreislaufes herrschen - wirksam sind. Insofern mussten sich Wissenschaftler verschiedener Disziplinen zusammentun, um Fortschritte bei der Erforschung des Phänomens zu erzielen. Solch ein entscheidender Fortschritt hat sich nun aus der Zusammenarbeit der Physiker-Arbeitsgruppen der TU München und der Universität Augsburg einerseits mit Medizinern aus Münster andererseits ergeben, die der im Rahmen der Exzellenzinitiative des Bundes geförderten "Nanosystems Initiative Munich" (TUM und LMU München) angehören.

Strömungssimulation im Computer

Die Arbeitshypothese am Anfang war, dass das ungefähr kugelförmige vWF Protein durch die Scherkräfte entfaltet wird, und dadurch die spezifischen Bindungsgruppen überhaupt erst an die Gefäßwand andocken können. Die Verformung eines kugelförmigen weichen Objekts in einer Strömung ist ein klassisches Problem der Strömungsdynamik und Beispiel einer Reihe von so genannten hydrodynamischen Instabilitäten, wie sie im Alltag und der Technik eine wichtige Rolle spielen. So beschreibt die Kelvin-Helmholtz-Instabilität das Verwirbeln zweier paralleler Flüssigkeits- oder Gasströmungen entgegengesetzter Richtung. Dieser Effekt trägt zur Wolkenbildung und zum Wettergeschehen auf der Erde bei. Ein anderes anschauliches Beispiel liefern Wellen auf einem See bei Wind oder der sich kräuselnde Rauch eines Räucherstäbchens in einem ansonsten ruhigen Zimmer. In dem hier behandelten Beispiel eines Proteins liegen die Größenskalen allerdings auf der Nanometer-Skala, und tatsächlich werden für Instabilitäten im Nanobereich, anders als im makroskopischen Bereich, thermische Anregungen relevant. An dieser Stelle wurden die Computersimulationen von Dr. Alfredo Alexander-Katz für das Forschungsprojekt sehr wichtig, der finanziert durch ein Stipendium der amerikanischen National Science Foundation (NSF) zwei Jahre am Lehrstuhl für Weiche Materie von Prof. Roland Netz gearbeitet hat. In seinen Simulationen konnte Dr. Alexander-Katz zeigen, dass die Entfaltung eines Proteins mit einer so genannten Protrusion (Verschiebung) startet: das ist eine kleines Stück des fadenförmigen Proteins, das aus der kugelförmigen Faltungsstruktur herausschaut. Dies ist in der Abbildung veranschaulicht, in der zeitlich aufeinander folgende Schnappschüsse aus der Simulation gezeigt werden. Die Protrusion bildet die erste Phase der kompletten Entfaltung des Proteinmoleküls, welches in der Simulation vereinfacht durch eine Perlenkette von einander anziehenden Kugeln dargestellt ist. In der gemeinsam von Dr. Alexander-Katz und Prof. Netz erarbeiteten Theorie, die im letzten Jahr in Physical Review Letters veröffentlicht wurde, wird dieser Protrusions-induzierte Entfaltungsmechanismus entschlüsselt. Insbesondere wird vorhergesagt, dass die Größe des Proteins der entscheidende Parameter für die Entfaltung im Scherfluss ist. Um ein Protein bei den in kleinen Gefäßen üblichen Scherraten zu entfalten, muss es einen Durchmesser von einem Mikrometer haben. Die erklärt, warum der vWF so riesig ist.

Experimentelle Bestätigung

Um den Effekt der Aktivierung des von-Willebrand-Faktors experimentell zu erforschen, mussten die Wissenschaftler zunächst eine Versuchsanordnung finden, die die Bedingungen in den Blutkapillaren widerspiegelt. Dafür nutzten sie vor allem die in den letzten Jahren in Augsburg entwickelte Methode des so genannten "Chip Labors": Auf einer Chipoberfläche mit einer Größe von einigen Millimetern wird hier unter Nutzung von akustischen Oberflächenwellen ("Nanoerdbeben") eine Strömung in einem nur wenige Mikrometer breiten Kanal erzeugt. Bei den in diesem "Chip Labor" erzeugten verschiedenen Strömungsgeschwindigkeiten ergab die Beobachtung des von-Willebrand-Faktors Erstaunliches: Sehr hohe Fließgeschwindigkeiten führen dazu, dass der vWF plötzlich seine Form ändert und von einer ca. 2 Mikrometer großen Kugel zu einem 100 Mikrometer langen Faden wird, genau wie mit Hilfe der theoretischen Modelle in computergestützten Simulationen vorhergesagt. Durch diese Entfaltung werden Bindungsstellen zur Verfügung gestellt, die vorher im Inneren der Kugel lagen. Mit diesen Bindungsstellen kann der vWF nun sehr effektiv an verschiedene Eiweiße, z. B. an Kollagene, der verletzten Gefäßwand anbinden. Zudem kommt es unter dauerhaft starker Strömung zur Quervernetzung von mehreren vWF-Fäden. An dieses Faser-Netzwerk können Blutplättchen leicht und verlässlich anbinden, was zur effektiven Bildung eines kleinen Blutpfropfens und damit zum Wundverschluss führt.

Der vollständige Fachartikel "Shear-induced unfolding triggers adhesion of von Willebrand factor fibers", in dem S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz und M. F. Schneider ihre einschlägigen Untersuchungen und deren Ergebnisse beschreiben, ist am 8. Mai in der US-amerikanischen Zeitschrift "Proceedings of the National Academy of Sciences" (PNAS) erschienen. Die PNAS zählen zu den weltweit angesehensten Zeitschriften in den Naturwissenschaften.

Kontakt:
Technische Universität München
Lehrstuhl für Physik II (T37, Theoretische Physik)
Prof. Dr. Roland Netz
James-Franck-Straße, 85747 Garching
Telefon: 089-289-12394, E-Mail: netz@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://einrichtungen.physik.tu-muenchen.de/T37/
http://www.nano-initiative-munich.de/

Weitere Berichte zu: Blutgerinnung Gefäßwand Mikrometer Protein Simulation

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verbesserte Heilungschancen durch individualisierte Therapie bei Hodgkin Lymphom
23.10.2017 | Uniklinik Köln

nachricht Aktuelle Therapiepfade und Studienübersicht zur CLL
20.10.2017 | Kompetenznetz Maligne Lymphome e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie