Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Stift misst den Sauerstoffgehalt im Blut

27.02.2007
Forscher der Leibniz Universität Hannover haben eine neue Technik zur Blutuntersuchung entwickelt

Er ist nur zehn Zentimeter lang, kann aber ziemlich viel: Ein zierlicher Metallstift, nicht größer als ein Kugelschreiber, ermöglicht die Bestimmung der Blutsauerstoffsättigung im menschlichen Gewebe. Das Messsystem kann im Grunde überall am Körper eingesetzt werden. Die Lichtleitfasern im Innern des Stiftes können auch in Körperöffnungen eingeführt werden.

So ist es möglich, anhand der Sauerstoffsättigung herauszufinden, wie zum Beispiel Wunden im Inneren des Körpers heilen. Auch in der Nachsorge von Organverplanzungen könnte die neue Technik eine Rolle spielen. Wissenschaftler des Instituts für Mess- und Regelungstechnik (IMR) der Leibniz Universität Hannover haben in Zusammenarbeit mit der Medizinischen Hochschule Hannover einen Prototyp des Gerätes entwickelt.

Das Prinzip, mit dem das System arbeitet, ist eigentlich nicht neu. Über Glasfasern im Stift wird Licht ausgestrahlt. Anhand der Zusammensetzung des zurückgestrahlten Lichtes können Experten die Sauerstoffsättigung des Blutes im Gewebe berechnen. Ganz ähnlich funktioniert das derzeit bereits von Ärzten angewandte Verfahren - die Pulsoximetrie. Mit einem Clip werden Körperteile durchleuchtet. Mittels der charakteristischen Schwächung der Lichtstärke kann die Zusammensetzung des Blutes bestimmt werden. Das Verfahren hat jedoch den Nachteil, dass nur Körperteile für die Untersuchung in Frage kommen, die auch zuverlässig durchleuchtet werden können, wie Ohrläppchen, Finger oder Lippe.

... mehr zu:
»Gewebe »Sauerstoffsättigung

Bei vielen Patienten muss deshalb nach wie vor zur Bestimmung des Sauerstoffgehaltes Blut abgenommen werden. Zudem versagt die Pulsoximetrie oft bei unter Schock stehenden oder unterkühlten Patienten.

Das neue Blutanalysesystem bietet den Vorteil, dass es überall am Körper anwendbar ist. Außerdem ist es erschütterungsunempfindlich und batteriebetrieben mobil einsetzbar. In die Tiefen des Muskels oder Gewebes kann das neue Gerät zwar auch nicht eindringen, "aber was in den oberen Gewebeschichten passiert, spiegelt vermutlich wider, was tiefer passiert", erläutert Dipl.-Ing. Oliver Buse vom Institut für Mess- und Regelungstechnik.

Somit könnte Ärzten bei der Behandlung von Patienten mit arteriellen Verschlusskrankheiten ein zusätzliches Diagnosesystem zur Verfügung stehen.

Das System sendet über eine leistungsstarke, weiße LED Licht durch das Gewebe. Das zurückgestrahlte Licht gelangt über eine Signalfaser mit einem Durchmesser von einem fünftel Millimeter zu einem Mikrospektrometer, wo das Licht in seine Spektralanteile zerlegt wird. Je nach Grad der Sauerstoffsättigung des Blutes wird das Licht mehr oder weniger stark absorbiert, ein Teil der eingestrahlten Farben fehlt hinterher.

Prinzipiell ist es mit dem Gerät auch möglich, andere Bestandteile des Blutes analysieren zu können, zum Beispiel den Farbstoff Bilirubin. Eine erhöhte Bilirubin-Konzentration weist auf eine Gelbsucht hin, die zum Beispiel bei Neugeborenen auftreten kann. Momentan arbeiten die Wissenschaftler an einer weiteren Verkleinerung des Gerätes, wie Oliver Buse ankündigt: "Es ist noch eine Zukunftsvision, aber irgendwann könnten zum Beispiel Leistungssportler das Gerät nutzen, um ihren Blutsauerstoffgehalt während des Trainings zu bestimmen."

Das Institut für Mess- und Regelungstechnik (IMR), das das Gerät entwickelt hat, ist Teil des Produktionstechnischen Zentrums (PZH) in Garbsen. Alle produktionstechnischen Institute der Fakultät für Maschinenbau der Leibniz Universität haben sich 2004 hier mit ihren gesamten Einrichtungen zusammengeschlossen. Neu ist die Bündelung von Wissenschaft und Industrie unter einem Dach. Wissenschaftler und Techniker arbeiten unmittelbar mit Partnern aus der Industrie zusammen, die sich unter anderem als Unternehmen mit im Gebäude angesiedelt haben.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Dipl.-Ing. Oliver Buse vom Institut für Mess- und Regelungstechnik unter Telefon +49 511.762-4280 oder per E-Mail unter oliver.buse@imr.uni-hannover.de gern zur Verfügung.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: Gewebe Sauerstoffsättigung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie