Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parkinson: Ursache sind fehlgeleitete Signale

22.02.2007
Marburger Neurologen veröffentlichen neueste Erkenntnisse in den Proceedings der US-Nationalakademie - Fehlgeleitete Zellteilungssignale führen zur Parkinson-Krankheit - Gentherapeutische Intervention erfolgreich

Ursache für den Tod von Gehirnzellen bei der Nervenkrankheit Morbus Parkinson ist ein fataler Irrweg, den die Neuronen einschlagen: "Obwohl sich die Nervenzellen des Gehirns nicht durch Zellteilung vermehren können, schalten erkrankte Zellen die gesamte molekulare Maschinerie an, die für die Zellteilung nötig ist", erklärt Dr. Günter U. Höglinger vom Fachbereich Medizin der Philipps-Universität Marburg, "und gehen schließlich daran zugrunde."

Diese Erkenntnis, die Basis für neue Therapieansätze sein könnte, veröffentlichte das internationale Team um den Neurologen Höglinger nun in den Proceedings der US-amerikanischen Nationalakademie (PNAS). Die Publikation (Band 104, Nr. 9, 3585-3590) erschien online bereits am 21. Februar 2007 unter dem Titel "The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease".

Internationale Kooperationspartner aus Paris und den USA

In Marburg wurde das Projekt unter Mitarbeit der Neurologen Dr. Candan Depboylu und Dr. Daniel Alvarez-Fischer sowie von Professor Dr. Wolfgang H. Oertel, Direktor der Klinik für Neurologie der Philipps-Universität, durchgeführt. Die internationalen Kooperationspartner stammen vom Pariser Institut National de la Santé et de la Recherche Médicale, von der Pariser Université Pierre et Marie Curie, von der Yale University im US-Bundesstaat Connecticut sowie von der ebenfalls US-amerikanischen University of Colorado.

Tatsächlich weist bei den untersuchten und von Parkinson betroffenen Nervenzellen laut Höglinger alles darauf hin, dass sie sich gleich teilen wollten: "Im Gehirngewebe verstorbener Patienten wiesen wir nach, dass sich der DNA-Strang bereits verdoppelt hatte und dass verschiedene molekulare Schalter aktiviert waren, die normalerweise zu einer Zellteilung führen" - ein erstaunlicher Vorgang angesichts der Tatsache, dass sich die ausdifferenzierten Nervenzellen des Gehirns grundsätzlich nicht durch Zellteilung vermehren können.

Im Reagenzglas sowie in Tiermodellen konnten die Forscher zudem nachweisen, dass es bei den erkrankten Nervenzellen, die scheinbar kurz vor einer Teilung stehen, diese aber dann doch nicht ausführen können, zu einem Konflikt von Signalen kommt. Dieser führt schließlich dazu, dass sie sich selbst umbringen.

Schalter werden nicht mehr umgelegt

"Der Versuch der Zellteilung und diese Art von Zelltod hängen wahrscheinlich eng miteinander zusammen", erklärt Höglinger, der seit dem Jahr 2004 die Arbeitsgruppe für Experimentelle Neurologie im Biomedizinischen Forschungszentrum der Philipps-Universität leitet. Beides sind entwicklungsgeschichtlich sehr alte Prozesse, die sich möglicherweise parallel entwickelten und daher über "Schalter" verfügen, die beiden gemeinsam sind.

In experimentellen Parkinson-Modellen konnten die Forscher bereits die detaillierte Abfolge der zellulären Signale entschlüsseln, die letztlich zum "irrtümlichen" Zelltod führen.

"Besonders interessant ist", so Höglinger, "dass wir diese Signale bereits beeinflussen können. Im Tierversuch haben wir durch gentechnische Manipulation erreicht, dass die molekularen Schalter für die Zellteilung nicht mehr 'umgelegt' werden und dass infolgedessen auch der Zelltod ausbleibt." Das internationale Forscherteam erhofft sich nun, dass ihre Erkenntnisse zur Entwicklung neuroprotektiver, also die gefährdeten Zellen schützender Strategien führen.

Aktuell arbeitet die Arbeitsgruppe um Höglinger intensiv daran, zu verstehen, was in den erkrankten Zellen dazu führt, diese fehlgeleiteten Signale zur Einleitung der "frustranen" Zellteilung zu aktivieren. Auf diese Weise hoffen sie, an einem möglichst frühen Punkt der fatalen Signalkaskade therapeutisch eingreifen zu können.

Eine der häufigsten Erkrankungen des Nervensystems

Die Parkinson-Krankheit ist eine der häufigsten Erkrankungen des Nervensystems. In Deutschland sind davon zwischen 200.000 und 250.000 Menschen betroffen. Zu ihren motorischen Symptomen gehören Bewegungsverlangsamung, Muskelsteifheit und ein charakteristisches Zittern. Ursache der Symptome sind nach und nach absterbende Nervenzellen in der Substantia Nigra. Diese Gehirnregion ist der wichtigste Produktionsort des Botenstoffs Dopamin. Gehen hier Nervenzellen zu Grunde, kommt es zum Dopaminmangel im gesamten Gehirn.

Die motorischen Symptome der Krankheit werden heute therapiert, indem mit Hilfe dopaminartiger Medikamente (L-DOPA, Dopamin-Agonisten) der Dopaminmangel ausgeglichen wird. Bislang gibt es aber keine Therapie, die das Fortschreiten des Zelltodes und damit des Schweregrades der Erkrankung aufhalten könnte. Dies liegt vor allem daran, dass die Mechanismen, die zum Absterben der Nervenzellen führen, nur unzureichend bekannt sind.

Kontakt

Dr. Günter U. Höglinger: Philipps-Universität Marburg, Zentrum für Nervenheilkunde, Klinik für Neurologie mit Poliklinik, Rudolf-Bultmann-Strasse 8, 35039 Marburg

Tel.: (6421) 28 66278, E-Mail: hoegling@med.uni-marburg.de, Internet: www.exp-neuro.de

Professor Dr. Wolfgang H. Oertel: Philipps-Universität Marburg, Zentrum für Nervenheilkunde, Klinik für Neurologie mit Poliklinik, Rudolf-Bultmann-Strasse 8, 35039 Marburg

Tel. : (06421) 28 66278, E-Mail: oertelw@staff.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Nervenzellen Neurologie Parkinson Signale Zellteilung Zelltod

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungsnachrichten

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics