Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstes kombiniertes PET/CT-Gerät in Deutschland

20.02.2002


Im Radiologischen Zentrum des Universitätsklinikums Essen wurde Anfang des Jahres das erste kombinierte PET/CT-Gerät Deutschlands in Betrieb genommen. Seit kurzem steht es routinemäßig für die Patientenbetreuung zur Verfügung. Das Essener Gerät ist das europaweit zweite kombinierte PET/CT-Gerät.

Bei dem PET/CT-Gerät handelt es sich um die Kombination zweier in der Krebsdiagnostik etablierter Verfahren: der Positronen-Emissions-Tomographie (PET) und der Röntgen-Computertomographie (CT). Das Gerät vereinigt in sich die Vorteile beider Verfahren und macht die weniger aussagekräftigen Einzeluntersuchungen überflüssig.
Mit Hilfe der PET, eines nuklearmedizinischen Verfahrens, können Stoffwechselprozesse sichtbar gemacht werden. Zum Einsatz kommen dabei Substanzen, die mit sogenannten Positronenstrahlern markiert sind. Zerfallen die Positronen, so senden sie in diametral entgegengesetzter Richtung zwei Photonen aus, die mit Hilfe des PET-Gerätes detektiert, also aufgezeichnet werden können. Wichtig ist, dass es sich um sogenannte physiologische Tracer handelt, also um Verbindungen, die in analoger Form Bestandteil des natürlichen Körperstoffwechsels sind.
Für die Krebsdiagnostik besonders wichtig ist beispielsweise die FDG-PET, also eine PET-Untersuchung mit Fluor-18 markierter Glukose (Traubenzucker), mit deren Hilfe sich der Zuckerstoffwechsel des Körpers sichtbar machen lässt. Da Krebszellen gegenüber gesunden Zellen einen erhöhten Zuckerumsatz haben, reichert sich das FDG in ihnen deutlich stärker an, als im umgebenden gesunden Gewebe. Die entarteten Krebszellen sind im späteren, zwei- oder dreidimensionalen PET-Bild als "Hotspots" sichtbar.
Nicht besonders hoch ist dagegen die Bildauflösung, die mit der PET erzielt werden kann. Gerade vor operativen Eingriffen ist es aber notwendig, den Tumor genau zu lokalisieren. Dies ist die Aufgabe der Röntgen-CT-Untersuchung im PET/CT-Gerät. Bei der Röntgen-CT werden von außen Röntgenstrahlen durch den Körper des Patienten geschickt und anschließend detektiert. Computergestützt wird aus diesen Informationen ein hochauflösendes Bild der Struktur der inneren Organe erstellt.
Wurden die Ergebnisse beider Verfahren benötigt, musste der Patient bisher vom einen in das andere Gerät umgebettet werden, wobei es nahezu unmöglich war, ihn dort wieder in die gleiche Lage (Körperhaltung) zu bringen. Anschließend konnten die PET- und CT-Bilder fusioniert, also elektronisch übereinandergelegt werden, was jedoch aufgrund der abweichenden Körperhaltung stets unpräzise blieb.
Das Gerät macht es möglich, beide bildgebenden Verfahren gleichzeitig und somit bei identischer Körperhaltung durchzuführen. Das Ergebnis ist ein Fusionsbild, in dem die Stärken beider Verfahren vereinigt sind: Die durch die PET-Untersuchung sichtbar gemachten Stoffwechselanomalien können durch das hochauflösende "scharfe" CT-Bild hervorragend den Gewebestrukturen im Körper zugeordnet werden.

Weitere Informationen: Prof. Dr. Dr. Andreas Bockisch, Direktor der Klinik und Poliklinik für Nuklearmedizin, Tel.: (02 01) 7 23 - 20 32, E-Mail: andreas.bockisch@uni-essen.de, Prof. Dr. Jörg Debatin, Direktor des Zentralinstituts für Röntgendiagnostik, Tel.: (02 01) 7 23 - 15 00, E-Mail: debatin@uni-essen.de und Prof. Dr. Michael Forsting, Direktor am Zentralinstitut für Röntgendiagnostik, Tel.: (02 01) 7 23 - 15 38 ,E-Mail: m.forsting@uni-essen.de.

Heike Jordan | idw
Weitere Informationen:
http://www.nuklearmedizin.de/

Weitere Berichte zu: PET PET/CT-Gerät

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics