Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Impfung gegen Nierenkrebs wird klinisch erprobt

13.12.2006
Neu entdeckte Tumor-Antigene sollen Immunreaktion verstärken

Die Impfung gegen Krebs stellt eine viel versprechende Therapie-Option dar. Ihr Ziel: Die körpereigene Abwehr gegen den Tumor zu verstärken. Ein Team um Professor Dr. Stefan Stevanovic, Universität Tübingen hat Strukturen - so genannte Tumor-Antigene - auf Nierenkrebszellen identifiziert, die zur Impfung gegen Nierentumoren eingesetzt werden. Erste klinische Studien mit diesen Antigenen laufen bereits. Die Deutsche Krebshilfe hat dazu erforderliche Forschungsarbeiten mit über 80.000 Euro gefördert.

Das Immunsystem hat die Aufgabe, Krankheitserreger wie Viren, Bakterien und Pilze zu zerstören. Die Abwehrzellen des Immunsystems erkennen die Erreger aufgrund von Eiweißstoffen, die auf der Oberfläche der "Eindringlinge" sitzen. Auch Krebszellen verraten sich gegenüber dem Immunsystem durch das Vorhandensein von verdächtigen Eiweiß-Molekülen auf ihrer Oberfläche - den so genannten Tumor-Antigenen. Spüren Abwehrzellen diese Strukturen auf, lösen sie eine Immunreaktion im Körper aus. Im Idealfall kann also das körpereigene Abwehrsystem den Krebs bekämpfen. "Die Immunantwort ist jedoch meist zu schwach, um die bösartigen Zellen effektiv zu vernichten", erklärt Stevanovic vom Institut für Zellbiologie der Universität Tübingen.

Die Tumor-Antigene lassen sich allerdings einsetzen, um die Abwehrreaktion gegen die Krebszellen zu erhöhen. Bei dieser so genannten Immuntherapie wird der Patient mit Tumor-Antigenen geimpft, die auch auf den Krebszellen in seinem Körper vorkommen. Auf diese Weise werden die Krebs-spezifischen Strukturen den Abwehrzellen vermehrt gezeigt. Dies kann die Immunreaktion erheblich verstärken.

Im Mittelpunkt der körpereigenen Abwehr stehen die so genannten T-Zellen. Sie kommen in zwei Formen vor: Während die T-Killerzellen das "Fußvolk" für die grobe Arbeit sind, stellen die T-Helferzellen die "Dirigenten" einer Immunreaktion dar. Denn im Gegensatz zu den Killerzellen, die Krankheitserreger zerstören, rufen die Helferzellen alle Abwehrzellen des Immunsystems auf den Plan, wenn sie fremde Strukturen erkennen. So regulieren sie die Abwehrreaktion und erhöhen wesentlich deren Stärke und Dauer.

"Es sind bereits viele Dutzend Tumor-Antigene bekannt, die zu einer Reaktion der T-Killerzellen gegen Krebs führen", erklärt Stevanovic. "Der große Vorteil der von uns entdeckten Tumor-Antigene ist, dass sie auch die T-Helferzellen aktivieren, von denen wir uns eine besonders effektive Immunreaktion versprechen."

Der Tübinger Arbeitsgruppe ist es außerdem gelungen, den Bauplan dieser Tumor-Antigene aufzuschlüsseln. So können sie diese im Labor herstellen und für eine Immuntherapie einsetzen. Drei dieser Tumor-Antigene werden derzeit an der Klinik für Urologie unter der Leitung von Professor Dr. Arnulf Stenzl in klinischen Studien als Impfstoff zur Immuntherapie bei Nierenzellkrebs erprobt. "Dabei konnten wir bereits ein Ansprechen von T-Zellen in Patienten beobachten, ohne dass schwerwiegende Nebenwirkungen auftraten. Zudem ist die Impfung technisch einfach", erklärt Stevanovic. "Die tatsächliche Bedeutung für die klinische Praxis können wir jedoch erst nach einer Zwischenauswertung - voraussichtlich Ende 2007 - beurteilen." Diese Art der Immuntherapie könnte in Zukunft insbesondere dafür eingesetzt werden, um Tumorreste, die beispielsweise nach einer Operation noch im Körper sind, zu vernichten.

Dr. med. Eva M. Kalbheim | idw
Weitere Informationen:
http://www.krebshilfe.de

Weitere Berichte zu: Abwehrzelle Immunreaktion Immunsystem Immuntherapie Impfung Tumor-Antigene

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Die neue Achillesferse von Blutkrebs
22.05.2018 | Ludwig Boltzmann Gesellschaft

nachricht Schnelltests für genauere Diagnose bei Hirntumoren
17.05.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics