Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medizinische Physik

01.03.2001


Das Herz in vier Dimensionen

Nur 30 bis 40 Sekunden Untersuchungszeit sind mit modernen

Computertomographie-Geräten nötig, um eine qualitativ hochwertige, dreidimensionale Abbildung von Herz und Herzkranzgefäßen aufzubauen. Da das Herz in allen Bewegungsphasen dargestellt wird, kommt zu den drei Raumrichtungen sogar noch eine vierte Dimension hinzu: die Zeit. Das Institut für Medizinische Physik an der Universität Erlangen-Nürnberg hat mit der 4D-Bildgebung einen Weg für frühzeitige Untersuchungen am Herzen eröffnet, der geeignet ist, die bisher übliche, für Patienten sehr belastende invasive Koronarangiographie zu ersetzen. Die Arbeitsgruppe unter der Leitung von Prof. Dr. Willi Kalender konzentriert sich unter anderem darauf, die Strahlendosis beim Einsatz der Computertomographie zu reduzieren.

Die theoretischen Grundlagen für die vierdimensionale Darstellung des Herzens, die durch den Pulsschlag kaum noch verzerrt wird und deshalb Abbildungen in zuvor ungekannter Qualität liefert, hatte das Institut für Medizinische Physik als weltweit erste Arbeitsgruppe bereits 1996 gelegt. Es wurden Rekonstruktionsalgorithmen entwickelt, Berechnungsmethoden, welche die Schichtbilder, die während der Drehung des Messapparats um den Körper entstehen, zu einer möglichst exakten räumlichen Abbildung zusammensetzen und überflüssige Daten ausblenden. Erste Patientenstudien fanden in Zusammenarbeit mit der Klinik für Innere Medizin II (Direktor: Prof. Dr. Werner G. Daniel) und dem Institut für Diagnostische Radiologie (Direktor: Prof. Dr. Werner Bautz) der Universität Erlangen-Nürnberg statt. Die American Association of Physicists in Medicine zeichnete die Veröffentlichung der Erfahrungen und Ergebnisse mit dem "Greenfield Award" für den besten Artikel in der weltweit führenden Fachzeitschrift "Medical Physics" im Jahr 1998 aus.


Todfeind Nr 1: Die Koronare Herzkrankheit

Durchblutungsstörungen bei eingeengten oder verschlossenen Herzkranzgefäßen führen dazu, dass es dem Herzmuskel an Energiezufuhr und an Sauerstoff mangelt. Die medizinische Diagnostik ist darum bemüht, die koronare Herzkrankheit - in den westlichen Industrieländern noch immer Todesursache Nr. 1 - im Anfangsstadium zu erkennen oder bereits entstandene Schäden und Risikobereiche genau abzugrenzen, um sie gezielt behandeln zu können. Eine Röntgenkontrastdarstellung der Koronararterien gilt derzeit als Standard für solche Untersuchungen. Sie ermöglicht den Blick ins Innere der Gefäße; Verengungen werden damit sichtbar.

Diese invasive Methode macht allerdings eine Anästhesie erforderlich. Ein Katheter muss eingeführt werden, der Kontrastmittel in relativ hoher Dosis bis in die Arterien bringt, und auch die Strahlendosis, die zur Durchleuchtung nötig ist, ist vergleichsweise groß. Eine nicht-invasive Alternative, die den Patienten derartige Unannehmlichkeiten und Risiken erspart, steht im Prinzip mit der sogenannten Elektronenstrahltomographie seit zehn Jahren zur Verfügung. Diese Geräte sind allerdings teuer und auf den Einsatz am Organ Herz beschränkt, so dass sie sich nicht durchsetzen konnten.
Konventionelle Computertomographen sind dagegen wesentlich vielseitiger und wurden ständig weiterentwickelt. Vor allem konnte die Rotationszeit stark gesenkt werden, und Mehrzeilendetektoren ermöglichen es, mehrere Schichten gleichzeitig zu erfassen. Das 4D-Bildungsverfahren des Erlanger Instituts für Medizinische Physik wurde noch an einem CT-Scanner mit 0,75 Sekunden Rotationszeit und Einzeilendetektor entworfen; mittlerweile wurde es in Kooperation mit Siemens Medical Systems auf aktuelle Systeme erweitert, die Rotationszeiten von 0,5 Sekunden bei gleichzeitiger Erfassung von vier Schichten aufweisen. Für die kardiale Bildgebung mit Computertomographie bedeutete dies einen Quantensprung. Vierdimensionale Darstellungen des Herzens sind nun mit den weit verbreiteten CT-Scannern möglich geworden, die durchaus das Potential besitzen, die invasiven Angiographien abzulösen.


Bis zur Hälfte der Strahlendosis kann eingespart werden

Die umfassenden diagnostischen Möglichkeiten und der unbestrittene Nutzen der Computertomographie haben dazu geführt, dass die Zahl der CT-Geräte und der CT-Untersuchungen in den letzten Jahren kontinuierlich gestiegen ist. Ein Nachteil dieser Art der Röntgendiagnostik ist jedoch, dass die Patienten, bedingt durch das Aufnahmeverfahren, einer vergleichsweise hohen Strahlendosis ausgesetzt sind. Obwohl in Deutschland nur etwa jede zwanzigste Untersuchung mit Röntgenstrahlen eine CT ist, macht ihr Anteil an der medizinischen Exposition der Bevölkerung fast 40 Prozent aus, und der Einsatz solcher Geräte wird mit Sicherheit noch steigen. Die Strahlendosis in der Computertomographie zu verringern, ist also eine wichtige Aufgabe.

Technische Maßnahmen zur Dosisreduktion könnten - neben gesetzlichen Vorgaben, wie der Einführung von Referenzdosiswerten für CT-Untersuchungen - die Strahlenbelastung niedriger halten. Ihr Ziel ist es, eine diagnostisch minimal notwendige Zahl von Röntgenquanten einzusetzen und das Signal optimal auszunutzen, die Strahlung also abzuschwächen, ohne die Bildqualität zu beeinträchtigen. Dafür bietet sich eine Vielzahl von Möglichkeiten an.

Potentiell dosisreduzierende Maßnahmen werden am Erlanger Institut für Medizinische Physik zunächst am Rechner simuliert, im erfolgversprechenden Fall dann am CT-Gerät implementiert und im Einsatz überprüft. Ein Beispiel für signifikante Dosisreduktion ohne negativen Einfluss auf die Bildqualität bietet die anatomieabhängige Röhrenstrommodulation, die ebenfalls in Kooperation mit Siemens Medical Systems durchgeführt wurde. Wie stark die Strahlung im Körper des Patienten geschwächt wird - wie groß also der Rauschbeitrag zum Bild ist - ist davon abhängig, ob die Strahlen seitlich oder von vorn nach hinten einfallen. Diese Unterschiede machen es möglich, den Röhrenstrom während einer Rotation je nach Lage zu regeln und anzupassen. Bis zu 50 Prozent der Dosis können auf diese Weise eingespart werden - für die Patienten eine erhebliche Begrenzung des Risikos.

Kontakt:
Prof. Dr. Willi A. Kalender PhD, Dr. Theobald Fuchs
Institut für Medizinische Physik
Krankenhausstraße 12, 91054 Erlangen
Tel.: 09131/85 -22310, Fax: 09131/85 -22824
E-Mail: willi.kalender@imp.uni-erlangen.de, theo@imp.uni-erlangen.de

Weitere Informationen finden Sie im WWW:

Heidi Kurth | idw

Weitere Berichte zu: Computertomographie Physik Rotationszeit

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Allergieforschung: Weltweit erstes automatisches Pollennetz in Bayern am Start
28.09.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Maßgeschneiderte Strategie gegen Glioblastome
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Heidelberg Laureate Forum: Eine Veranstaltung mit Zukunft

29.09.2016 | Veranstaltungen

Wissenschaftsjahr Meere und Ozeane - Oktober 2016

29.09.2016 | Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schwerste Atome im Rampenlicht

29.09.2016 | Physik Astronomie

Zelluläres Kräftemessen

29.09.2016 | Interdisziplinäre Forschung

K 2016: Von OLED-Verkapselung bis Plagiatschutz

29.09.2016 | Messenachrichten