Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medizinische Physik

01.03.2001


Das Herz in vier Dimensionen

Nur 30 bis 40 Sekunden Untersuchungszeit sind mit modernen

Computertomographie-Geräten nötig, um eine qualitativ hochwertige, dreidimensionale Abbildung von Herz und Herzkranzgefäßen aufzubauen. Da das Herz in allen Bewegungsphasen dargestellt wird, kommt zu den drei Raumrichtungen sogar noch eine vierte Dimension hinzu: die Zeit. Das Institut für Medizinische Physik an der Universität Erlangen-Nürnberg hat mit der 4D-Bildgebung einen Weg für frühzeitige Untersuchungen am Herzen eröffnet, der geeignet ist, die bisher übliche, für Patienten sehr belastende invasive Koronarangiographie zu ersetzen. Die Arbeitsgruppe unter der Leitung von Prof. Dr. Willi Kalender konzentriert sich unter anderem darauf, die Strahlendosis beim Einsatz der Computertomographie zu reduzieren.

Die theoretischen Grundlagen für die vierdimensionale Darstellung des Herzens, die durch den Pulsschlag kaum noch verzerrt wird und deshalb Abbildungen in zuvor ungekannter Qualität liefert, hatte das Institut für Medizinische Physik als weltweit erste Arbeitsgruppe bereits 1996 gelegt. Es wurden Rekonstruktionsalgorithmen entwickelt, Berechnungsmethoden, welche die Schichtbilder, die während der Drehung des Messapparats um den Körper entstehen, zu einer möglichst exakten räumlichen Abbildung zusammensetzen und überflüssige Daten ausblenden. Erste Patientenstudien fanden in Zusammenarbeit mit der Klinik für Innere Medizin II (Direktor: Prof. Dr. Werner G. Daniel) und dem Institut für Diagnostische Radiologie (Direktor: Prof. Dr. Werner Bautz) der Universität Erlangen-Nürnberg statt. Die American Association of Physicists in Medicine zeichnete die Veröffentlichung der Erfahrungen und Ergebnisse mit dem "Greenfield Award" für den besten Artikel in der weltweit führenden Fachzeitschrift "Medical Physics" im Jahr 1998 aus.


Todfeind Nr 1: Die Koronare Herzkrankheit

Durchblutungsstörungen bei eingeengten oder verschlossenen Herzkranzgefäßen führen dazu, dass es dem Herzmuskel an Energiezufuhr und an Sauerstoff mangelt. Die medizinische Diagnostik ist darum bemüht, die koronare Herzkrankheit - in den westlichen Industrieländern noch immer Todesursache Nr. 1 - im Anfangsstadium zu erkennen oder bereits entstandene Schäden und Risikobereiche genau abzugrenzen, um sie gezielt behandeln zu können. Eine Röntgenkontrastdarstellung der Koronararterien gilt derzeit als Standard für solche Untersuchungen. Sie ermöglicht den Blick ins Innere der Gefäße; Verengungen werden damit sichtbar.

Diese invasive Methode macht allerdings eine Anästhesie erforderlich. Ein Katheter muss eingeführt werden, der Kontrastmittel in relativ hoher Dosis bis in die Arterien bringt, und auch die Strahlendosis, die zur Durchleuchtung nötig ist, ist vergleichsweise groß. Eine nicht-invasive Alternative, die den Patienten derartige Unannehmlichkeiten und Risiken erspart, steht im Prinzip mit der sogenannten Elektronenstrahltomographie seit zehn Jahren zur Verfügung. Diese Geräte sind allerdings teuer und auf den Einsatz am Organ Herz beschränkt, so dass sie sich nicht durchsetzen konnten.
Konventionelle Computertomographen sind dagegen wesentlich vielseitiger und wurden ständig weiterentwickelt. Vor allem konnte die Rotationszeit stark gesenkt werden, und Mehrzeilendetektoren ermöglichen es, mehrere Schichten gleichzeitig zu erfassen. Das 4D-Bildungsverfahren des Erlanger Instituts für Medizinische Physik wurde noch an einem CT-Scanner mit 0,75 Sekunden Rotationszeit und Einzeilendetektor entworfen; mittlerweile wurde es in Kooperation mit Siemens Medical Systems auf aktuelle Systeme erweitert, die Rotationszeiten von 0,5 Sekunden bei gleichzeitiger Erfassung von vier Schichten aufweisen. Für die kardiale Bildgebung mit Computertomographie bedeutete dies einen Quantensprung. Vierdimensionale Darstellungen des Herzens sind nun mit den weit verbreiteten CT-Scannern möglich geworden, die durchaus das Potential besitzen, die invasiven Angiographien abzulösen.


Bis zur Hälfte der Strahlendosis kann eingespart werden

Die umfassenden diagnostischen Möglichkeiten und der unbestrittene Nutzen der Computertomographie haben dazu geführt, dass die Zahl der CT-Geräte und der CT-Untersuchungen in den letzten Jahren kontinuierlich gestiegen ist. Ein Nachteil dieser Art der Röntgendiagnostik ist jedoch, dass die Patienten, bedingt durch das Aufnahmeverfahren, einer vergleichsweise hohen Strahlendosis ausgesetzt sind. Obwohl in Deutschland nur etwa jede zwanzigste Untersuchung mit Röntgenstrahlen eine CT ist, macht ihr Anteil an der medizinischen Exposition der Bevölkerung fast 40 Prozent aus, und der Einsatz solcher Geräte wird mit Sicherheit noch steigen. Die Strahlendosis in der Computertomographie zu verringern, ist also eine wichtige Aufgabe.

Technische Maßnahmen zur Dosisreduktion könnten - neben gesetzlichen Vorgaben, wie der Einführung von Referenzdosiswerten für CT-Untersuchungen - die Strahlenbelastung niedriger halten. Ihr Ziel ist es, eine diagnostisch minimal notwendige Zahl von Röntgenquanten einzusetzen und das Signal optimal auszunutzen, die Strahlung also abzuschwächen, ohne die Bildqualität zu beeinträchtigen. Dafür bietet sich eine Vielzahl von Möglichkeiten an.

Potentiell dosisreduzierende Maßnahmen werden am Erlanger Institut für Medizinische Physik zunächst am Rechner simuliert, im erfolgversprechenden Fall dann am CT-Gerät implementiert und im Einsatz überprüft. Ein Beispiel für signifikante Dosisreduktion ohne negativen Einfluss auf die Bildqualität bietet die anatomieabhängige Röhrenstrommodulation, die ebenfalls in Kooperation mit Siemens Medical Systems durchgeführt wurde. Wie stark die Strahlung im Körper des Patienten geschwächt wird - wie groß also der Rauschbeitrag zum Bild ist - ist davon abhängig, ob die Strahlen seitlich oder von vorn nach hinten einfallen. Diese Unterschiede machen es möglich, den Röhrenstrom während einer Rotation je nach Lage zu regeln und anzupassen. Bis zu 50 Prozent der Dosis können auf diese Weise eingespart werden - für die Patienten eine erhebliche Begrenzung des Risikos.

Kontakt:
Prof. Dr. Willi A. Kalender PhD, Dr. Theobald Fuchs
Institut für Medizinische Physik
Krankenhausstraße 12, 91054 Erlangen
Tel.: 09131/85 -22310, Fax: 09131/85 -22824
E-Mail: willi.kalender@imp.uni-erlangen.de, theo@imp.uni-erlangen.de

Weitere Informationen finden Sie im WWW:

Heidi Kurth | idw

Weitere Berichte zu: Computertomographie Physik Rotationszeit

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie