Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mögliche Ursache für tödliche Herzrhythmusstörungen entdeckt

23.11.2006
Mediziner am Universitätsklinikum Göttingen beschreiben im Journal of Clinical Investigation die Regulation von Natrium-Kanälen im Herz durch das Kalzium-abhängige Protein CaMKII

Wissenschaftler am Bereich Humanmedizin der Universität Göttingen beschreiben ein neuartiges Zusammenspiel von Proteinen im Herzen als mögliche Ursache für tödliche Herzrhythmusstörungen. Die Forschergruppe unter der Leitung von Priv. Doz. Dr. Lars S. Maier, Abteilung Kardiologie und Pneumologie (Direktor: Prof. Dr. Gerd Hasenfuß) im Herzzentrum des Bereichs Humanmedizin Göttingen hat entdeckt, dass die Natrium-Kanäle, die entscheidend für die elektrische Aktivität des Herzmuskels sind, auch durch das Protein CaMKII (Kalzium/Calmodulin-abhängige Proteinkinase II) reguliert werden.

Das Ergebnis könnte die Grundlage für die zukünftige Behandlung schwerer Herzrhythmusstörungen sein. Das gilt vor allem bei der chronischen Herzmuskelschwäche, bei der CaMKII vermehrt in den Herzmuskelzellen vorkommt. Die Arbeit entstand in Kooperation mit Arbeitsgruppen in Münster, Würzburg, Chicago und San Diego und erscheint am 22. November 2006 in der renommierten Fachzeitschrift Journal of Clinical Investigation.

„Unsere Ergebnisse zeigen erstmals, dass der Natrium-Kanal durch das Kalzium-abhängige Protein CaMKII reguliert wird. Dadurch ändert sich die Funktion des Kanals. Das Ergebnis ähnelt einer Kombination aus dem Long QT-Syndrom und dem Brugada-Syndrom, zwei Erkrankungen beim Menschen mit Gefahr des plötzlichen Herztods“, so Priv. Doz. Dr. Lars S. Maier.

Das Eiweiß CaMKII-delta war bisher nur als Regulator von Kalzium-Kanälen bekannt. Das jetzt beobachtete Zusammenspiel der CaMKII mit dem Natrium-Kanal am Herzmuskel könnte eine Erklärung dafür sein, warum Patienten mit Herzschwäche, bei denen eine erhöhte CaMKII-Aktivität beobachtet wird, häufiger unter Herzrhythmusstörungen und Herzkammerflimmern leiden.

Um ihre Vermutung zu testen, haben die Wissenschaftler bei Mäusen künstlich die Menge an CaMKII-Eiweißen im Herzmuskel erhöht, woraufhin die Tiere Herzschwäche entwickelten. In weiteren Untersuchungen bestätigte sich, dass das Protein CaMKII direkt mit dem Natrium-Kanal im Herzgewebe interagiert und ihn reguliert.

„Wir haben die CaMKII zunächst in Herzen von Mäusen aber auch in Herzmuskelzellen von Kaninchen vermehrt. Mit Hilfe von Patch-Clamp-Elektrophysiologie beobachteten wir eine komplexe Fehlregulation des Natrium-Stroms durch den Natrium-Kanal. Mit Fluoreszenzfarbstoffen konnte dann ein erhöhter Natrium-Gehalt in den Zellen nachgewiesen werden. Mit weiterführenden biochemischen Analysen konnten wir eine räumliche Nähe der CaMKII zu dem Natrium-Kanal nachweisen“, so Dr. Stefan Wagner, Haupt-Experimentator der Arbeit. „Der Natrium-Kanal wird direkt von der CaMKII phosphoryliert“, sagt Dipl. Biol. Nataliya Dybkova, die ebenfalls zu der Göttinger Arbeitsgruppe gehört.

Das Forschungsprojekt wurde wesentlich durch das Emmy Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) gefördert sowie von dem Forschungsförderprogramm der Medizinischen Fakultät des Bereichs Humanmedizin der Universität Göttingen.

Der Natrium-Kanal des Herzens dient als „Taktgeber“ für die normale elektrische Erregung des Herzens, indem er unter anderem das so genannte Aktionspotential im Herzmuskel initiiert. Bei Störung der Funktion dieses Kanals kann es zu gefährlichen Herzrhythmusstörungen bis hin zu Kammerflimmern kommen. In den letzten Jahren sind mehrere Ursachen von Fehlregulationen dieses Natrium-Kanals entdeckt worden, darunter Veränderungen in den Genen, die für diesen Kanal kodieren. Zwei Erkrankungen sind das „Long QT-Syndrom“ und das „Brugada-Syndrom“, die mit einer deutlich erhöhten Gefahr des plötzlichen Herztods durch Kammerflimmern einhergehen.

Etwa zwei Millionen Menschen sind in Deutschland an Herzmuskelschwäche erkrankt. Die Aussicht auf Heilung ist, fast wie bei vielen Krebserkrankungen, sehr gering. Nur jeder dritte bis vierte Patient lebt noch fünf Jahre nach dem ersten Auftreten der Symptome. Die Hälfte der Betroffenen stirbt, weil das Herz zu schwach pumpt, die andere Hälfte an der Folge von Herzrhythmusstörungen.

Weitere Informationen:
Bereich Humanmedizin – Universität Göttingen Abteilung Kardiologie und Pneumologie und
Herzzentrum Göttingen
Emmy Noether-Nachwuchsgruppe
Priv. Doz. Dr. Lars S. Maier
Robert-Koch-Straße 40
37075 Göttingen

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.humanmedizin-goettingen.de

Weitere Berichte zu: CaMKII Herzmuskel Herzrhythmusstörung Natrium-Kanal Protein

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie