Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer: Energiemangel als Risikofaktor?

21.02.2001


... mehr zu:
»Alzheimer »Nervenzelle
Je älter der Mensch wird, desto weniger Energie steht seinem Gehirn zur Verfügung. An der Universität Würzburg wird erforscht, ob und wie sich ein Energiemangel in den Nervenzellen auf das Entstehen der
Alzheimer-Krankheit auswirkt.

Das Problem der Alzheimer-Erkrankung wird mit der zunehmenden Überalterung der Bevölkerung in den Industriestaaten immer drängender werden. Deshalb erfährt die Alzheimer-Forschung seit einigen Jahren eine immer stärkere Unterstützung. So auch durch die "Hirnliga e.V. - Liga zur Erforschung, Erkennung und Behandlung von Hirnleistungsstörungen" mit Sitz in Nümbrecht (Nordrhein-Westfalen), die ein Projekt an der Universität Würzburg fördert.

Hierbei arbeitet PD Dr. Reinhard Schinzel vom Lehrstuhl für Physiologische Chemie I mit der Klinischen Neurochemie der Universitäts-Nervenklinik (Prof. Dr. Peter Riederer) und der Abteilung Neurowissenschaften des Interdisziplinären Zentrums für Klinische Forschung in Leipzig (PD Dr. Gerald Münch) zusammen. Die Wissenschaftler untersuchen die Auswirkungen eines Energiemangels auf zwei wichtige Vorgänge in Nervenzellen, die zu den charakteristischen Veränderungen im Gehirn von Alzheimer-Patienten und damit zum Nachlassen der geistigen Fähigkeiten führen.

Einer dieser Vorgänge ist die Ablagerung von unlöslichen Eiweißbruchstücken im Gehirn. Die Ablagerungsstellen, "senile Plaques" genannt, können als Entzündungsherde wirken und so benachbarte Nervenzellen schädigen. Die zweite Veränderung ist die Bildung von Eiweißfäden in den Nervenzellen: Diese Ablagerungen können durch eine chemische Reaktion mit Zuckern so vernetzt werden, dass sie unwiederbringlich verklumpen und das Funktionieren der Zelle behindern.

Die Würzburger Forscher wollen nun herausfinden, welchen Einfluss die Energieversorgung der Nervenzellen auf diese Prozesse hat. Als Modellsystem verwenden sie im Labor kultivierte Nervenzellen, in denen durch einen stufenweisen Entzug von Glukose ein Energiemangel ausgelöst wird.

Dr. Schinzel: "Zunächst untersuchen wir, ob die beiden für Alzheimer typischen Veränderungen durch den Energiemangel ausgelöst oder beschleunigt werden." Dies sei denkbar, weil die Schutzsysteme der Zellen viel Energie verbrauchen. Der Mangel könnte also ihre Funktion beeinträchtigen und die Anfälligkeit der Zellen für degenerative Prozesse erhöhen.

Zur Entwicklung von neuen Therapieansätzen solle zudem festgestellt werden, ob der Energiemangel und die durch ihn verursachten biochemischen Veränderungen durch die Zugabe von Arzneistoffen ausgeglichen werden können. Möglicherweise könnten solche Medikamente, die beispielsweise bereits zur Behandlung von diabetischen Nervenfunktionsstörungen zugelassen sind, auch den Ausbruch von Alzheimer verzögern.

Weitere Informationen: PD Dr. Reinhard Schinzel, T (0931) 888-4140, Fax (0931) 888-4150, E-Mail: schinzel@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Alzheimer Nervenzelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie