Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufgerichteter Wirbel befreit von Schmerzen und macht mobil

29.06.2006
Studie der Medizinischen Universitätsklinik Heidelberg bestätigt Therapieerfolg der Kyphoplastie / Expertensymposium am 30. Juni / 1. Juli 2006 in Heidelberg

Patienten mit schmerzhaften Einbrüchen von Wirbelkörpern aufgrund von Osteoporose steht seit einigen Jahren ein effektives Verfahren zur Verfügung, das sie von ihren Schmerzen erlösen und ihnen die verlorene Mobilität zurückgeben kann: die Wiederaufrichtung des Wirbels durch einen Ballon und nachfolgender Einspritzung von Biozement - "Kyphoplastie" genannt.


Der Biozement wird zur Stabilisierung des Wirbelkörpers eingespritzt. Foto: kyphon

Das hohe Potential dieses Eingriffs bestätigen Zwischenergebnisse der weltweit einzigen Studie mit hoher wissenschaftlicher Aussagekraft, die seit drei Jahren an der Medizinischen Universitätsklinik Heidelberg durchgeführt wird und die jetzt bei einem Symposium der Klinik am 30. Juni 2006 vorgestellt werden: 30 Prozent der knapp 400 behandelten Heidelberger Patienten sind völlig schmerzfrei, bei 60 Prozent konnten die Schmerzen erheblich gelindert werden. Belastende Schmerzmedikamente konnten abgesetzt oder drastisch reduziert werden.

Weniger Schmerzen, bessere Beweglichkeit, höhere Knochendichte

... mehr zu:
»Knochengewebe »Kyphoplastie »Wirbel

Zudem treten neue Wirbelkörperbrüche um 50 Prozent weniger häufig auf als bei den nicht behandelten Kontrollpatienten, obwohl alle Patienten wegen ihrer Osteoporose eine optimale medikamentöse Therapie erhielten. Offenbar können erhöhte Beweglichkeit und kräftigere Knochen den Patienten vor neuen Brüchen bewahren.

"Die Ergebnisse sind sehr viel versprechend", erklärt Professor Dr. Dr. Christian Kasperk, Leiter der Studie und der Sektion Osteologie in der Medizinischen Universitätsklinik Heidelberg. "Allerdings sollten Therapieergebnisse wissenschaftlich überprüft und zusätzlich erforscht werden, ob der Biozement tatsächlich das Knochengewebe zu neuem Wachstum anregt." Weltweit wurden bereits ca. 200.000 Menschen mit der Kyphoplastie behandelt ; dennoch sollte die Methode kritisch geprüft und optimiert werden.

Erfolgreicher Einsatz auch bei Wirbelbrüchen nach Unfällen

Der kritischen Auseinandersetzung und zur Fortbildung dient auch das Symposium "Kyphoplastie - Aktueller Stand und Perspektiven", das am Freitag und Samstag, dem 30. Juni und 1. Juli 2006 im Kommunikationszentrum des Deutschen Krebsforschungszentrums in Heidelberg stattfindet. Experten aus Deutschland, der Schweiz und Österreich präsentieren Forschungsergebnisse und ihre praktischen Erfahrungen.

Das Verfahren der Kyphoplastie ist einfach: Eine Kanüle mit einem Ballon wird unter Röntgensicht in den gebrochenen Wirbel vorgeschoben. Der aufgeblasene Ballon weitet den Wirbelkörper zu einem Hohlraum aus, der mit speziellem Biozement gefüllt wird. Der Wirbel wird auf diese Weise gekittet und stabilisiert, der Druck auf die Nerven und damit die Schmerzen entfallen.

Der Biozement besteht aus Hydroxylapatit, einer Substanz, die das Knochenwachstum stimuliert. Er wird von neu gebildeten Blutgefäßen durchwachsen, um die sich Knochengewebe bildet. Die Heidelberger Laboruntersuchungen deuten darauf hin, dass der Biozement nach einigen Jahren vollständig durch eigenes Knochengewebe des Patienten ersetzt wird.

Interdisziplinäres Heidelberger Ärzteteam gewährleistet Therapieerfolg

Eine Kyphoplastie ist nur sinnvoll, wenn die Schmerzen eindeutig auf den Wirbelköperbruch zurück zu führen sind. Ein hoch spezialisiertes Ärzteteam des Universitätsklinikums bestehend aus Professor Dr. Dr. Christian Kasperk (Osteologe und Endokrinologe), Professor Dr. Peter-Jürgen Meeder (Unfallchirurg), Dr. Martin Baier (Orthopäde und Unfallchirurg) und Professor Dr. Gerd Nöldge (Radiologe) wählt die für eine Kyphoplastie geeigneten Patienten nach strengen Kriterien aus und führt die Therapie gemeinsam durch.

Ansprechpartner:

Professor Dr. Dr. med. Christian Kasperk
Leiter der Sektion Osteologie
der Medizinischen Universitätsklinik Heidelberg
Tel: 06221 / 568605
E-Mail: Christian.Kasperk@med.uni-heidelberg.de
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: Annette_Tuffs@med.uni-heidelberg.de
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/
http://www.kyphoplastie.de

Weitere Berichte zu: Knochengewebe Kyphoplastie Wirbel

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie