Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diabetes insipidus: der Wasserdiabetes

21.03.2006


Unbehandelte Patienten mit Diabetes insipidus scheiden bis zu 20 Liter Harn pro Tag aus. Dr. Pavel Nedvetsky vom Leibniz-Institut für Molekulare Pharmakologie in Berlin erforscht die zellulären Grundlagen dieses Leidens.



Der Mensch besteht zu ungefähr sechzig Prozent aus Wasser. So ist es nicht verwunderlich, dass er ein ausgefeiltes System zur Regulierung seines Wasserhaushaltes besitzt. Eine zentrale Rolle spielt dabei die Niere. Ist das Regelsystem durch Krankheiten gestört, kann das lebensbedrohliche Auswirkungen haben. Eine diese Krankheiten ist Diabetes insipidus. Dr. Pavel Nedvetsky erforscht in einer von Enno Klußmann geleiteten Gruppe am Leibniz-Institut für Molekulare Pharmakologie (FMP) dieses Leiden, auch Wasserdiabetes genannt.

... mehr zu:
»Diabetes »FVB »Myosin »Niere »Zellmembran


Bei Diabetes insipidus haben die Nieren der betroffenen Personen die Fähigkeit verloren, auf das Hormon Vasopressin zu reagieren, das bei Durst ausgeschüttet wird. Unbehandelte Patientien scheiden dann bis zu 20 Liter Wasser am Tag mit dem Harn aus (siehe auch Hintergrund-Text unten).

Bei gesunden Menschen kontrolliert das Hormon Vasopressin einen Prozess, bei dem Harn aufkonzentriert und das Wasser daraus zurückgewonnen wird. Die molekularbiologischen Grundlagen dieses Vorgangs untersucht Pavel Nedvetsky. Um das Wasser zu "recyclen", müssen Wasserkanäle (Aquaporine) in die Zellmembranen von so genannten Hauptzellen des Sammelrohrs der Nieren eingelagert werden. Dort findet die Rückgewinnung statt. Durch die Wasserkanäle kann das Wasser aus dem Harn in die Zellen und schließlich in das Blut zurückfließen.

Pavel Nedvetsky untersucht die Art und Weise, wie ein bestimmter Wasserkanal (Aquaporin- 2) aus dem Zellinneren zur Zellmembran gebracht wird. Nedvetsky konnte zeigen, dass das Motormolekül Myosin Vb den Wasserkanal entlang von faserartigen Strukturen zur Zellmembran transportiert. Diese Strukturen durchziehen eine Zelle wie ein Netz und werden als Cytoskelett bezeichnet. Es ist aus verschiedenen Proteinfilamenten aufgebaut. Eines dieser Filamente besteht aus Aktin. Das kommt unter anderem auch in Muskeln vor, wo es im Zusammenspiel mit einem anderen Myosin (Myosin II) für Bewegungen verantwortlich ist. Dabei gehen Myosin und Aktin eine kurzzeitige Verbindung ein - ähnliches passiert auch beim Aquaporin-Transport.

Myosin Vb sieht aus wie ein Y und kann mit seinen zwei kurzen Enden in einem Wechselspiel von Lösen und Binden der Myosinfüße an Aktinfilamenten eine Art Laufbewegung ausführen. In der animierten Darstellung von elektronenmikroskopischen Aufnahmen sieht das aus, als würde eine Stoppuhr mit zwei Zeigern sehr schnell laufen. Jedes Mal wenn ein Zeiger die Sechs überschreitet, hat das Molekül einen Schritt gemacht.

Zum Anknüpfen an Wasserkanäle benutzt Myosin Vb sein drittes Ende. Aquaporin-2 liegt im Zellinneren in eingepackt in eine Art Bläschen (Vesikel) vor. Um den Wassertransport aus dem Primärharn zurück in den Körper zu vermitteln, muss der Wasserkanal aber in die Membran, die das Sammelrohr vom Primärharn trennt, eingebaut werden. Durch einen noch nicht näher geklärten Mechanismus binden diese Vesikel an das Myosin. Sie werden dann bis zum Ende der Aktinfilamente transportiert, wo sie ihre Fracht an die Zellmembran abliefern. Manchmal übergeben sie ihre Fracht auch an weitere Transportproteine. Diese können sich beispielsweise auf den Microtubuli, einer anderen Struktur des Cytoskelettes, fortbewegen. Wie der Transport hier verläuft, möchte die Arbeitsgruppe als nächstes klären. Autor: Thomas Rode

Weitere Informationen
Leibniz-Institut für Molekulare Pharmakologie
Dr. Enno Klußmann / Dr. Pavel Nedvetsky
Tel.: 030 / 9 47 93-260 / -259
Mail: klussmann@fmp-berlin.de
nedvetsky@fmp-berlin.de

Hintergrund-Information

Die Nieren filtrieren das Blut mehr als hundert Mal am Tag und wälzen bis zu 1500 Liter um, wobei rund 180 Liter Primärharn entstehen. Unbrauchbare Substanzen werden mit dem Harn ausgeschieden, brauchbare Stoffe, wie auch Wasser, zurück in den Körper geleitet.

Das Wasser gelangt über die Wasserkanäle Aquaporin-1 bis -4, die in bestimmten Zellen des Nierenepithels vorkommen, zurück in das Blut. 90 Prozent dieses Wassertransportes ist konstitutiv, also ständig aktiv. Das verbleibende Wasser wird durch Aquaporin-2 geleitet. Dieses Aquaporin ist durch das antidiuretische Hormon (Vasopressin) regelbar.

Bei Menschen, die an Diabetes insipidus leiden, können die Nieren das aus dem Blut filtrierte Wasser nicht in ausreichender Menge zurückgewinnen. Als Folge davon müssen unbehandelte Patienten bis zu 20 Liter Wasser am Tag ausscheiden und haben ständig Durst.

Neunzig Prozent der Menschen, die an Diabetes insipidus erkranken, leiden an einer genetischen Mutation. Sie liegt auf dem X-Chromosom. Eine solche Schädigung des X-Chromosoms trifft vor allem Männer, die nur eines davon besitzen. Bei Frauen liegen zwei X-Chromosomen vor. Die Wahrscheinlichkeit, dass beide defekt sind, ist gering.

Bei zehn Prozent der Diabetes-insipidus-Patienten kommt das Aquaporin-2 in einer verkrüppelten Form vor. Er kann nicht in die Zellmembran integriert werden. Somit kann kein Wasser Vasopressin-abhängig zurückgewonnen werden.

Dieser Text (Autor: Thomas Rode) ist ein Auszug aus dem aktuellen Verbundjournal, der Zeitschrift des Forschungsverbundes Berlin e.V. (FVB). Das Verbundjournal erscheint vierteljährlich als Printausgabe und ist auch von den Seiten des FVB herunterzuladen (www.fv-berlin.de). Titelthema der aktuellen Ausgabe ist Forschung mit und über Wasser. Das Heft kann kostenlos von uns angefordert werden (Mails bitte an zens@fv-berlin.de).

Das Forschungsinstitut für Molekulare Pharmakologie (FMP) ist ein Institut der Leibniz-Gemeinschaft. Es ist die einzige außeruniversitäre pharmakologische Forschungseinrichtung Deutschlands und betreibt Grundlagenforschung zur Identifizierung und Nutzbarmachung potentieller Zielstrukturen für Pharmaka. Die interdisziplinär angelegte Forschung basiert auf der thematischen Zusammenarbeit und räumlichen Zusammenführung von Medizinern, Molekularbiologen, Molekulargenetikern, Strukturbiologen und Chemikern in den verschiedenen Abteilungen und Nachwuchsgruppen des Instituts. Ziel ist die Entwicklung neuer Konzepte für eine pharmakologische Beeinflussung des Organismus.

Das FMP gehört zum Forschungsverbund Berlin e.V. (FVB). Darin sind acht natur-, umwelt- und lebenswissenschaftlich orientierte Institute zusammengeschlossen, die wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. Alle Institute des FVB gehören zur Leibniz-Gemeinschaft und werden von Bund und Ländern gemeinsam finanziert.

Josef Zens | idw
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Berichte zu: Diabetes FVB Myosin Niere Zellmembran

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie

Elektrisch leitende Hülle für Bakterien

29.06.2017 | Biowissenschaften Chemie