Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hochleistungslasern gezielt Protonen erzeugen

26.01.2006


Physiker der Universität Jena veröffentlichen einmaliges Ergebnis in "Nature"



Mit Protonenstrahlen sollen Krebsgeschwüre in sensiblen Körperregionen, wie dem Kopf, zielgenauer und nebenwirkungsärmer behandelt werden als mit herkömmlichen Röntgenbestrahlungen. Ausgenutzt wird dabei, dass die geladenen Teilchen auf extrem hohe Geschwindigkeiten - bis zu 50 Prozent der Lichtgeschwindigkeit - beschleunigt werden können. Beim Auftreffen auf den Tumor wird der Strahl so stark abgebremst, dass die Protonen ihre Energie direkt im Tumor abgeben, der dadurch gezielt zerstört wird. Bislang wird diese Therapie nur selten angewandt, da sie technisch sehr aufwändig ist. In München wird derzeit das - nach eigenen Angaben - europaweit erste vollklinische Protonentherapie-Zentrum eingerichtet.



Dass es bald weitere Zentren geben könnte, dafür hat ein internationales Physikerteam unter Leitung von Prof. Dr. Roland Sauerbrey (53) jetzt die Grundlagen gelegt. Den Forschern ist es an der Friedrich-Schiller-Universität Jena weltweit zum ersten Mal gelungen, mit einem Hochleistungslaser Protonen zu erzeugen, die eine einheitliche Geschwindigkeit haben und sich damit grundsätzlich zur Protonentherapie eignen. "Damit ist erstmals das Prinzip mit einem Laser demonstriert worden", sagt Prof. Sauerbrey. Der Verlauf des Experiments und seine Ergebnisse werden am Donnerstag (26.01.) in der weltbekannten Fachzeitschrift "Nature" veröffentlicht.

Den Jenaern ist es mit ihrer Versuchsanordnung gelungen, einen gerichteten Protonenstrahl bei 1,3 MeV zu erzeugen. Das Jenaer Ergebnis auf die Protonentherapie übertragen, würde bedeuten, dass der Tumor gezielter bestrahlt werden kann. Außerdem ist die Laseranordnung deutlich handlicher als die bisher eingesetzten Beschleunigeranlagen.

Durchgeführt wurde das komplexe Experiment an der Jenaer Universität mit "Jeti" - einem 10 Terawatt-Titan-Saphir-Laser. Mit Jeti wurde eine hauchdünne (5 Mikrometer = 5 millionstel Meter) Titanfolie gezielt beschossen. Auf dem mit 5-10 Mikrometer irrwitzig kleinen Zielgebiet erzeugt der Laserstahl mit einem enormen Druck von rd. 10 Mrd. Bar ein Plasma und Protonen. Hinter der Folie entsteht ein elektrisches Feld, von dem aus die monoenergetischen Protonen mit extrem hoher Geschwindigkeit ausgesandt werden. Der Jenaer "Kniff" besteht nun darin, die Titanfolie mit einem Kunststoff - einem mit Rhodamin 6 G behandelten Plexiglas - zu beschichten. Dieser winzige Kunststoffspot erzeugt den gleichmäßigen Protonenstrahl und definiert seine Geschwindigkeit. Um beim Beschuss exakt zielen zu können, griffen die Jenaer Physiker erneut in die "Trickkiste". Von der Rückseite wurde die Kunststoffstelle durch einen anderen, kleineren Laser zum Leuchten gebracht, um das Ziel sichtbar zu machen. Erwünschter Nebeneffekt war eine "Reinigung" der Folienrückseite, so dass ausschließlich die Protonen aus dem Kunststoffspot beschleunigt wurden.

"Selbst ein größerer Laser ist einfacher zu handhaben als die bisher eingesetzten Beschleuniger", wirbt Prof. Sauerbrey für eine Nutzung der Forschungsergebnisse in der Medizin. Doch noch ist man von einer Umsetzung ein Stück entfernt. Denn zur Behandlung von Augentumoren wird eine Energie von 70 MeV, für die Behandlung von Kopftumoren sogar rd. 250 MeV benötigt. Die Erhöhung der Energieausbeute sollte jedoch durch einen kräftigeren Laser möglich sein - an der Friedrich-Schiller-Universität wird dafür ein Petawatt-Laser zur Verfügung stehen. Der ermöglicht Leistungen, die so stark sind, "als würde das ganze Licht der Sonne, das auf die Erde trifft, auf ein Haar fokussiert", erläutert der Jenaer Laser-Experte.

"In drei bis vier Jahren sind die benötigten Parameter erreichbar", ist der Direktor des Instituts für Optik und Quantenelektronik der Universität Jena überzeugt. Bis zu einer klinischen Anwendung würden dann noch einmal weitere fünf Jahre benötigt, gibt Sauerbrey den Zeitraum vor. Er sieht die Zukunft der Protonentherapie im Laser, denn dessen eigentliche Ineffizienz sei kein Problem, "da ein bis zwei Schuss ausreichen würden, um den Patienten zu behandeln", ist sich Sauerbrey sicher.

Eine andere Anwendung in der Medizin - "auch das noch Zukunftsmusik", wie Sauerbrey bemerkt - könnte die Erzeugung von kurzlebigen Radionukliden für die Positronen-Emissions-Tomographie (PET) sein. Die leicht radioaktiven Isotope können zwar bereits für diese Anwendung hergestellt und genutzt werden - aber nicht per Laser. Mit ihm wäre "eine Detektion und Behandlung des Tumors mit nur einem Laser möglich", ergänzt Sauerbreys Mitarbeiter Kay-Uwe Amthor. Dies würde den Eingriff verkürzen und sicherer machen.

Doch für die Jenaer Laserforscher stehen zunächst ganz andere Fragen im Mittelpunkt. Sie wollen nun das Experiment mit kleineren Spots und größeren Lasern wiederholen. Dabei sollen dann die erzeugten Protonenstrahlen gleichzeitig zur Plasma-Diagnostik verwendet werden. Denn die Erweiterung der Plasmaphysik ist eines von Sauerbreys vorrangigen Zielen - ohne die Anwendungen aus dem Auge zu verlieren.

Originalpublikation:
"Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets", H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, T. Esirkepov. Nature v. 26.01.2006.

Kontakt:
Prof. Dr. Roland Sauerbrey
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947200
E-Mail: sauerbrey@ioq.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.physik.uni-jena.de/~ioq/

Weitere Berichte zu: Laser MeV Protonenstrahl Protonentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics