Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hochleistungslasern gezielt Protonen erzeugen

26.01.2006


Physiker der Universität Jena veröffentlichen einmaliges Ergebnis in "Nature"



Mit Protonenstrahlen sollen Krebsgeschwüre in sensiblen Körperregionen, wie dem Kopf, zielgenauer und nebenwirkungsärmer behandelt werden als mit herkömmlichen Röntgenbestrahlungen. Ausgenutzt wird dabei, dass die geladenen Teilchen auf extrem hohe Geschwindigkeiten - bis zu 50 Prozent der Lichtgeschwindigkeit - beschleunigt werden können. Beim Auftreffen auf den Tumor wird der Strahl so stark abgebremst, dass die Protonen ihre Energie direkt im Tumor abgeben, der dadurch gezielt zerstört wird. Bislang wird diese Therapie nur selten angewandt, da sie technisch sehr aufwändig ist. In München wird derzeit das - nach eigenen Angaben - europaweit erste vollklinische Protonentherapie-Zentrum eingerichtet.



Dass es bald weitere Zentren geben könnte, dafür hat ein internationales Physikerteam unter Leitung von Prof. Dr. Roland Sauerbrey (53) jetzt die Grundlagen gelegt. Den Forschern ist es an der Friedrich-Schiller-Universität Jena weltweit zum ersten Mal gelungen, mit einem Hochleistungslaser Protonen zu erzeugen, die eine einheitliche Geschwindigkeit haben und sich damit grundsätzlich zur Protonentherapie eignen. "Damit ist erstmals das Prinzip mit einem Laser demonstriert worden", sagt Prof. Sauerbrey. Der Verlauf des Experiments und seine Ergebnisse werden am Donnerstag (26.01.) in der weltbekannten Fachzeitschrift "Nature" veröffentlicht.

Den Jenaern ist es mit ihrer Versuchsanordnung gelungen, einen gerichteten Protonenstrahl bei 1,3 MeV zu erzeugen. Das Jenaer Ergebnis auf die Protonentherapie übertragen, würde bedeuten, dass der Tumor gezielter bestrahlt werden kann. Außerdem ist die Laseranordnung deutlich handlicher als die bisher eingesetzten Beschleunigeranlagen.

Durchgeführt wurde das komplexe Experiment an der Jenaer Universität mit "Jeti" - einem 10 Terawatt-Titan-Saphir-Laser. Mit Jeti wurde eine hauchdünne (5 Mikrometer = 5 millionstel Meter) Titanfolie gezielt beschossen. Auf dem mit 5-10 Mikrometer irrwitzig kleinen Zielgebiet erzeugt der Laserstahl mit einem enormen Druck von rd. 10 Mrd. Bar ein Plasma und Protonen. Hinter der Folie entsteht ein elektrisches Feld, von dem aus die monoenergetischen Protonen mit extrem hoher Geschwindigkeit ausgesandt werden. Der Jenaer "Kniff" besteht nun darin, die Titanfolie mit einem Kunststoff - einem mit Rhodamin 6 G behandelten Plexiglas - zu beschichten. Dieser winzige Kunststoffspot erzeugt den gleichmäßigen Protonenstrahl und definiert seine Geschwindigkeit. Um beim Beschuss exakt zielen zu können, griffen die Jenaer Physiker erneut in die "Trickkiste". Von der Rückseite wurde die Kunststoffstelle durch einen anderen, kleineren Laser zum Leuchten gebracht, um das Ziel sichtbar zu machen. Erwünschter Nebeneffekt war eine "Reinigung" der Folienrückseite, so dass ausschließlich die Protonen aus dem Kunststoffspot beschleunigt wurden.

"Selbst ein größerer Laser ist einfacher zu handhaben als die bisher eingesetzten Beschleuniger", wirbt Prof. Sauerbrey für eine Nutzung der Forschungsergebnisse in der Medizin. Doch noch ist man von einer Umsetzung ein Stück entfernt. Denn zur Behandlung von Augentumoren wird eine Energie von 70 MeV, für die Behandlung von Kopftumoren sogar rd. 250 MeV benötigt. Die Erhöhung der Energieausbeute sollte jedoch durch einen kräftigeren Laser möglich sein - an der Friedrich-Schiller-Universität wird dafür ein Petawatt-Laser zur Verfügung stehen. Der ermöglicht Leistungen, die so stark sind, "als würde das ganze Licht der Sonne, das auf die Erde trifft, auf ein Haar fokussiert", erläutert der Jenaer Laser-Experte.

"In drei bis vier Jahren sind die benötigten Parameter erreichbar", ist der Direktor des Instituts für Optik und Quantenelektronik der Universität Jena überzeugt. Bis zu einer klinischen Anwendung würden dann noch einmal weitere fünf Jahre benötigt, gibt Sauerbrey den Zeitraum vor. Er sieht die Zukunft der Protonentherapie im Laser, denn dessen eigentliche Ineffizienz sei kein Problem, "da ein bis zwei Schuss ausreichen würden, um den Patienten zu behandeln", ist sich Sauerbrey sicher.

Eine andere Anwendung in der Medizin - "auch das noch Zukunftsmusik", wie Sauerbrey bemerkt - könnte die Erzeugung von kurzlebigen Radionukliden für die Positronen-Emissions-Tomographie (PET) sein. Die leicht radioaktiven Isotope können zwar bereits für diese Anwendung hergestellt und genutzt werden - aber nicht per Laser. Mit ihm wäre "eine Detektion und Behandlung des Tumors mit nur einem Laser möglich", ergänzt Sauerbreys Mitarbeiter Kay-Uwe Amthor. Dies würde den Eingriff verkürzen und sicherer machen.

Doch für die Jenaer Laserforscher stehen zunächst ganz andere Fragen im Mittelpunkt. Sie wollen nun das Experiment mit kleineren Spots und größeren Lasern wiederholen. Dabei sollen dann die erzeugten Protonenstrahlen gleichzeitig zur Plasma-Diagnostik verwendet werden. Denn die Erweiterung der Plasmaphysik ist eines von Sauerbreys vorrangigen Zielen - ohne die Anwendungen aus dem Auge zu verlieren.

Originalpublikation:
"Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets", H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, T. Esirkepov. Nature v. 26.01.2006.

Kontakt:
Prof. Dr. Roland Sauerbrey
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947200
E-Mail: sauerbrey@ioq.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.physik.uni-jena.de/~ioq/

Weitere Berichte zu: Laser MeV Protonenstrahl Protonentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stammzell-Transplantation: Aktivierung von Signalwegen schützt vor gefährlicher Immunreaktion
20.04.2017 | Technische Universität München

nachricht Was Bauchspeicheldrüsenkrebs so aggressiv macht
18.04.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten