Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EUCLOCK untersucht das Timing der inneren Uhr - Ein neues Forschungsnetzwerk für Europas Chronobiologen

16.01.2006


Wer an dunklen Wintermorgen zur Arbeit geht und an ebenso dunklen Winterabenden zurückkehrt, kennt das Problem: Ohne Sonnenlicht wird keiner so richtig wach. Das hat mit der inneren Uhr zu tun, die bei allen Lebewesen von Bakterien, Tieren und Pflanzen bis zum Menschen circadiane Rhythmen steuert. Diese hängen eng mit zyklischen Veränderungen der Umwelt zusammen, werden aber nicht nur vom Tag-Nacht-Wechsel und anderen Umweltsignalen angetrieben, sondern auch auf molekularer und zellulärer Ebene kontrolliert. Das europäische Forschungsnetzwerk EUCLOCK läuft diesen Monat an. Für die nächsten fünf Jahre stehen den beteiligten 34 Chronobiologen von 29 Institutionen in 11 Ländern rund 16 Millionen Euro zur Verfügung, davon 12 Millionen aus EU-Mitteln. EUCLOCK untersucht die circadiane Uhr von Zellen, höheren Organismen und dem Menschen. Besonderes Augenmerk gilt der Frage, wie die Synchronisation mit Veränderungen der Umwelt erfolgt. Koordinator des Projekts ist Professor Till Roenneberg an der Ludwig-Maximilians-Universität (LMU) München.



Das Verhalten, die Physiologie und die Biochemie eines jeden Lebewesens ist über den Verlauf des Tages zeitlich strukturiert. Diese Oszillationen erfassen unter anderem Zyklen von Ruhe und Aktivität, die Körpertemperatur, die Urinproduktion, den Blutdruck oder den Puls. Auch die Enzymaktivität, die Hormonkonzentration und sogar die Genexpression folgen einem jeweils bestimmten Muster. Neben Veränderungen der Umwelt hat vor allem die innere Uhr Einfluss auf diese Mechanismen. Das zeigt sich daran, dass auch dann Zyklen ablaufen, wenn ein Organismus unter experimentellen Bedingungen keine Informationen über die Außenwelt erhält. Ein "innerer Tag" besteht also unabhängig von der Umwelt, er wird normalerweise aber durch so genanntes Entrainment mit der Außenwelt synchronisiert. Dies erfolgt über Umweltsignale, die Zeitgeber.

... mehr zu:
»EUCLOCK »Forschungsnetzwerk


Das Entrainment, also die Synchronisation der inneren Rhythmen mit den äußeren Bedingungen, ist der Schlüssel zum Verständnis der circadianen Uhr und ihrer Kontrollmechanismen. "Weil Menschen selten unter wirklich konstanten Bedingungen leben, befindet sich fast jeder in einem Zustand des Entrainments", so Roenneberg. "Das ist wichtig für die klinische und die Grundlagenforschung, für medizinische Diagnosen und Therapien, aber auch für eine Optimierung von Arbeit und Freizeit. EUCLOCK untersucht deshalb die circadiane Uhr unter Bedingungen des Entrainments." Gelingt die Synchronisation von innerer und äußerer Zeit nicht oder nicht ausreichend, etwa bei Schichtarbeit oder aufgrund altersabhängiger Veränderungen, kann das Auswirkungen auf die Gesundheit und das Wohlbefinden haben.

EUCLOCK gibt europäischen Wissenschaftlern jetzt die Gelegenheit, die circadiane Uhr unter Bedingungen des Entrainments mit Hilfe fortgeschrittener Methoden zu untersuchen. Zudem werden die Voraussetzungen für eine großflächige, nicht invasive Untersuchung des Entrainments beim Menschen entwickelt werden. Die ersten Tiermodelle für Schichtarbeit sollen entstehen, die dann wie etwa 20 Prozent der arbeitenden Bevölkerung Schichtzeiten ausgesetzt werden, in diesem Fall also gegen ihre innere Uhr aktiv sind und fressen. Das dabei stattfindende "Dysentrainment" wird von der genetischen Ebene bis zum Verhalten hin untersucht werden, um Hinweise zu bekommen, wie den Folgen der Schichtarbeit beim Menschen besser begegnet werden kann. Dabei sollen auch neue genetische Komponenten, die die innere Uhr und ihr Entrainment bei Tier und Mensch kontrollieren, identifiziert werden. Die neuen experimentellen Methoden und circadianen Modellorganismen sollen die Möglichkeiten der systembiologischen Forschung auch dem Gebiet der Chronobiologie für Untersuchungen auf Ebene der Gene, der Proteine und des Stoffwechsels eröffnen. "Ich bin überzeugt, dass die Innovationen von EUCLOCK die Zukunft der circadianen Forschung bestimmen werden", meint Roenneberg dazu.

Teilnehmer: Ludwig-Maximilians-Universität München (D), University of Fribourg (CH), Inserm (F), University of Padua (I), University of Groningen (NL) University of Regensburg( D), University of Oxford (UK), Charité Berlin (D), University of Leicester (UK), University of Leiden (NL), GSF Nat. Res. Centre (D), Estonia Biocentre (EST), University of Edinburgh (UK), BRC, Szeged, Hungary (H) MRC Harwell (UK), CNRS (F), University of Geneva (CH), University of Surrey (UK), Acad. Inst. of Physiology (CZ), Erasmus MC-Rotterdam (NL), University of Basel (CH), Russ. Acad. Med. Science (RUS), University of London, Queen Mary & Westfield College (UK), University of the Philippines, LUX Biotech (UK), Lichtblick (D), NewBehaviour (CH), Personal Health Inst. Int. VOF (NL), Sowoon Technologies (CH/B), Bühlmann Laboratories (CH)

Ansprechpartner:

Prof. Dr. Till Roenneberg
Zentrum für Chronobiologie
Institut für Medizinische Psychologie der LMU
Tel: ++49-89-2180 75 239
Fax ++49-89-2180 75 615
E-Mail: euclock@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: EUCLOCK Forschungsnetzwerk

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise