Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eierstock-Krebs: 65 % der Zellen setzen Abwehr schachmatt

15.12.2005


Tumorzellen des Eierstock-Krebs nutzen zwei unabhängige Mechanismen, um den Abwehrreaktionen des Körpers zu entgehen - und entziehen sich damit auch einer neu entdeckten Bekämpfung durch das umliegende Gewebe. Details dieser bei 65 % der untersuchten Krebszellen beobachteten Strategien werden heute in Clinical Cancer Research publiziert. Die Gruppe um Prof. Michael Krainer an der Medizinischen Universität Wien schafft mit dieser vom Wissenschaftsfonds FWF unterstützten Arbeit auch eine wichtige Grundlage zur Optimierung einer neuen Krebs-Therapie.

... mehr zu:
»Eierstock-Krebs »Krebszelle »TRAIL

Eine Krebszelle macht noch keinen Tumor. Damit es so weit kommt muss die Krebszelle sich vielfach teilen - und dazu auch Mechanismen entwickeln, die es den Tochterzellen ermöglicht der körpereigenen Abwehr zu entgehen. Zwei Mechanismen, die bisher unbekannt waren, hat jetzt Prof. Michael Krainer, Klinik für Innere Medizin I, Medizinische Universität Wien bei der Untersuchung von Zellen des Eierstock-Krebs entdeckt.

TRAIL & Error


Beide Mechanismen bewirken, dass ein als TRAIL bezeichnetes Signalmolekül des Körpers in den entarteten Zellen wirkungslos bleibt. Dieses Signalmolekül bewirkt eigentlich das Absterben in ihrer Funktion beeinträchtigter Zellen. Tatsächlich ist TRAIL Teil eines ausgeklügelten Schutzprogrammes des Körpers, das schädliche Zellen in den als Apoptosis bezeichneten Selbstmord treibt.

Prof. Krainer und sein Team konnten nun feststellen, dass über 20% der Tumorzellen das TRAIL-Molekül erst gar nicht binden können. Denn dazu fehlen ihnen die notwendigen Rezeptoren DR4 und DR5. So kann TRAIL bei diesen Krebszellen die zur Apoptosis notwendigen Mechanismen nicht aktivieren. Bereits im Herbst 2005 konnte das Team zeigen, dass Modifikationen des für DR4 kodierenden Genes zu einer geringeren Herstellung dieses Rezeptors in Tumorzellen führen und damit einen Hintergrund der molekularen Mechanismen der TRAIL Resistenz bei Ovarialkarzinomen klären. Dieser Mechanismus und seine klinische Bedeutung wurden mit der nun vorliegenden Arbeit eindrucksvoll bestätigt.

Zusätzlich konnte das Team zeigen, dass weitere 40% der Krebszellen ein Protein herstellen, das die Aktivierung des Selbstmord-Programms selbst dann verhindert, wenn TRAIL bindet. Dieses als FLIP bezeichnete Protein unterbindet die von TRAIL im Zellinneren aktivierten Prozesse. Tatsächlich hat FLIP eine ähnliche Struktur wie ein Enzym, das durch TRAIL eigentlich aktiviert werden soll. Eben diese Ähnlichkeit bewirkt, dass TRAIL seine Wirkung auf FLIP ausübt und nicht auf das tatsächlich aktive Enzym.

Zur Häufigkeit dieser Schutzmechanismen meint Dr. Peter Horak, Co-Autor der jetzt veröffentlichten Studie: "Wir haben sogar festgestellt, dass 6 % der untersuchten Krebszellen beide Mechanismen gemeinsam besaßen. Insgesamt haben über 65 % der 68 untersuchten Krebszellen zumindest einen Mechanismus, der es ihnen erlaubt den von TRAIL mediierten körpereigenen Gegenangriffen zu entkommen."

Tumor-Therapie mit TRAIL

Weiterhin fand das Team, dass gerade in Gewebeproben von Patientinnen in fortgeschrittenem Stadium erhöhte Konzentrationen an TRAIL auftraten. Interessanterweise insbesondere im gesunden Gewebe nahe des Tumors. Dazu Prof. Krainer: "Nach bisherigem Erkenntnisstand wird TRAIL vor allem von den Krebs-Zellen selber hergestellt. Gesundes Gewebe der Eierstöcke stellt normalerweise kein TRAIL her. Die von uns nun erstmals beobachtete Präsenz von TRAIL in diesem Gewebe ist als Reaktion auf die Tumorentstehung zu sehen. Der Körper kämpft zurück. Tatsächlich zeigen unsere Daten, dass jene Patientinnen die TRAIL auch in diesem Gewebe produzieren eine höhere Lebenserwartung hatten." Gerade diese letzte Erkenntnis deutet an, dass TRAIL zukünftig auch therapeutisch eingesetzt werden könnte.

Tatsächlich werden derzeit zwei innovative Therapieansätze entwickelt, die beide auf der gesteuerten Aktivierung der TRAIL-bindenden Rezeptoren beruhen. Die jetzt in Clinical Cancer Research publizierten Daten des Teams um Prof. Krainer liefern für beide Ansätze wichtige Informationen zu deren möglicher Wirksamkeit. Denn diese wird sowohl von der körpereigenen Herstellung dieses Signalmoleküls als auch von den nun entdeckten Schutzmechanismen beeinflusst werden.

Originalpublikation: Perturbation of the TRAIL cascade in ovarian cancer: Overexpression of FLIPL and deregulation of the functional TRAIL receptors DR4 and DR5. Horak et al., Clin Can Res., Vol.: pp: 8585-8591 DOI: 10.1158/1078-0432.CCR-05-1276

Wissenschaftlicher Kontakt:
Prof. Dr. Michael Krainer
Medizinische Universität Wien
Österreich
T +43 / 664 / 183 76 77
E michael.krainer@meduniwien.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Prof. Dr. Michael Krainer | www.prd.at
Weitere Informationen:
http://www.meduniwien.ac.at

Weitere Berichte zu: Eierstock-Krebs Krebszelle TRAIL

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics