Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eierstock-Krebs: 65 % der Zellen setzen Abwehr schachmatt

15.12.2005


Tumorzellen des Eierstock-Krebs nutzen zwei unabhängige Mechanismen, um den Abwehrreaktionen des Körpers zu entgehen - und entziehen sich damit auch einer neu entdeckten Bekämpfung durch das umliegende Gewebe. Details dieser bei 65 % der untersuchten Krebszellen beobachteten Strategien werden heute in Clinical Cancer Research publiziert. Die Gruppe um Prof. Michael Krainer an der Medizinischen Universität Wien schafft mit dieser vom Wissenschaftsfonds FWF unterstützten Arbeit auch eine wichtige Grundlage zur Optimierung einer neuen Krebs-Therapie.

... mehr zu:
»Eierstock-Krebs »Krebszelle »TRAIL

Eine Krebszelle macht noch keinen Tumor. Damit es so weit kommt muss die Krebszelle sich vielfach teilen - und dazu auch Mechanismen entwickeln, die es den Tochterzellen ermöglicht der körpereigenen Abwehr zu entgehen. Zwei Mechanismen, die bisher unbekannt waren, hat jetzt Prof. Michael Krainer, Klinik für Innere Medizin I, Medizinische Universität Wien bei der Untersuchung von Zellen des Eierstock-Krebs entdeckt.

TRAIL & Error


Beide Mechanismen bewirken, dass ein als TRAIL bezeichnetes Signalmolekül des Körpers in den entarteten Zellen wirkungslos bleibt. Dieses Signalmolekül bewirkt eigentlich das Absterben in ihrer Funktion beeinträchtigter Zellen. Tatsächlich ist TRAIL Teil eines ausgeklügelten Schutzprogrammes des Körpers, das schädliche Zellen in den als Apoptosis bezeichneten Selbstmord treibt.

Prof. Krainer und sein Team konnten nun feststellen, dass über 20% der Tumorzellen das TRAIL-Molekül erst gar nicht binden können. Denn dazu fehlen ihnen die notwendigen Rezeptoren DR4 und DR5. So kann TRAIL bei diesen Krebszellen die zur Apoptosis notwendigen Mechanismen nicht aktivieren. Bereits im Herbst 2005 konnte das Team zeigen, dass Modifikationen des für DR4 kodierenden Genes zu einer geringeren Herstellung dieses Rezeptors in Tumorzellen führen und damit einen Hintergrund der molekularen Mechanismen der TRAIL Resistenz bei Ovarialkarzinomen klären. Dieser Mechanismus und seine klinische Bedeutung wurden mit der nun vorliegenden Arbeit eindrucksvoll bestätigt.

Zusätzlich konnte das Team zeigen, dass weitere 40% der Krebszellen ein Protein herstellen, das die Aktivierung des Selbstmord-Programms selbst dann verhindert, wenn TRAIL bindet. Dieses als FLIP bezeichnete Protein unterbindet die von TRAIL im Zellinneren aktivierten Prozesse. Tatsächlich hat FLIP eine ähnliche Struktur wie ein Enzym, das durch TRAIL eigentlich aktiviert werden soll. Eben diese Ähnlichkeit bewirkt, dass TRAIL seine Wirkung auf FLIP ausübt und nicht auf das tatsächlich aktive Enzym.

Zur Häufigkeit dieser Schutzmechanismen meint Dr. Peter Horak, Co-Autor der jetzt veröffentlichten Studie: "Wir haben sogar festgestellt, dass 6 % der untersuchten Krebszellen beide Mechanismen gemeinsam besaßen. Insgesamt haben über 65 % der 68 untersuchten Krebszellen zumindest einen Mechanismus, der es ihnen erlaubt den von TRAIL mediierten körpereigenen Gegenangriffen zu entkommen."

Tumor-Therapie mit TRAIL

Weiterhin fand das Team, dass gerade in Gewebeproben von Patientinnen in fortgeschrittenem Stadium erhöhte Konzentrationen an TRAIL auftraten. Interessanterweise insbesondere im gesunden Gewebe nahe des Tumors. Dazu Prof. Krainer: "Nach bisherigem Erkenntnisstand wird TRAIL vor allem von den Krebs-Zellen selber hergestellt. Gesundes Gewebe der Eierstöcke stellt normalerweise kein TRAIL her. Die von uns nun erstmals beobachtete Präsenz von TRAIL in diesem Gewebe ist als Reaktion auf die Tumorentstehung zu sehen. Der Körper kämpft zurück. Tatsächlich zeigen unsere Daten, dass jene Patientinnen die TRAIL auch in diesem Gewebe produzieren eine höhere Lebenserwartung hatten." Gerade diese letzte Erkenntnis deutet an, dass TRAIL zukünftig auch therapeutisch eingesetzt werden könnte.

Tatsächlich werden derzeit zwei innovative Therapieansätze entwickelt, die beide auf der gesteuerten Aktivierung der TRAIL-bindenden Rezeptoren beruhen. Die jetzt in Clinical Cancer Research publizierten Daten des Teams um Prof. Krainer liefern für beide Ansätze wichtige Informationen zu deren möglicher Wirksamkeit. Denn diese wird sowohl von der körpereigenen Herstellung dieses Signalmoleküls als auch von den nun entdeckten Schutzmechanismen beeinflusst werden.

Originalpublikation: Perturbation of the TRAIL cascade in ovarian cancer: Overexpression of FLIPL and deregulation of the functional TRAIL receptors DR4 and DR5. Horak et al., Clin Can Res., Vol.: pp: 8585-8591 DOI: 10.1158/1078-0432.CCR-05-1276

Wissenschaftlicher Kontakt:
Prof. Dr. Michael Krainer
Medizinische Universität Wien
Österreich
T +43 / 664 / 183 76 77
E michael.krainer@meduniwien.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Prof. Dr. Michael Krainer | www.prd.at
Weitere Informationen:
http://www.meduniwien.ac.at

Weitere Berichte zu: Eierstock-Krebs Krebszelle TRAIL

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie