Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eierstock-Krebs: 65 % der Zellen setzen Abwehr schachmatt

15.12.2005


Tumorzellen des Eierstock-Krebs nutzen zwei unabhängige Mechanismen, um den Abwehrreaktionen des Körpers zu entgehen - und entziehen sich damit auch einer neu entdeckten Bekämpfung durch das umliegende Gewebe. Details dieser bei 65 % der untersuchten Krebszellen beobachteten Strategien werden heute in Clinical Cancer Research publiziert. Die Gruppe um Prof. Michael Krainer an der Medizinischen Universität Wien schafft mit dieser vom Wissenschaftsfonds FWF unterstützten Arbeit auch eine wichtige Grundlage zur Optimierung einer neuen Krebs-Therapie.

... mehr zu:
»Eierstock-Krebs »Krebszelle »TRAIL

Eine Krebszelle macht noch keinen Tumor. Damit es so weit kommt muss die Krebszelle sich vielfach teilen - und dazu auch Mechanismen entwickeln, die es den Tochterzellen ermöglicht der körpereigenen Abwehr zu entgehen. Zwei Mechanismen, die bisher unbekannt waren, hat jetzt Prof. Michael Krainer, Klinik für Innere Medizin I, Medizinische Universität Wien bei der Untersuchung von Zellen des Eierstock-Krebs entdeckt.

TRAIL & Error


Beide Mechanismen bewirken, dass ein als TRAIL bezeichnetes Signalmolekül des Körpers in den entarteten Zellen wirkungslos bleibt. Dieses Signalmolekül bewirkt eigentlich das Absterben in ihrer Funktion beeinträchtigter Zellen. Tatsächlich ist TRAIL Teil eines ausgeklügelten Schutzprogrammes des Körpers, das schädliche Zellen in den als Apoptosis bezeichneten Selbstmord treibt.

Prof. Krainer und sein Team konnten nun feststellen, dass über 20% der Tumorzellen das TRAIL-Molekül erst gar nicht binden können. Denn dazu fehlen ihnen die notwendigen Rezeptoren DR4 und DR5. So kann TRAIL bei diesen Krebszellen die zur Apoptosis notwendigen Mechanismen nicht aktivieren. Bereits im Herbst 2005 konnte das Team zeigen, dass Modifikationen des für DR4 kodierenden Genes zu einer geringeren Herstellung dieses Rezeptors in Tumorzellen führen und damit einen Hintergrund der molekularen Mechanismen der TRAIL Resistenz bei Ovarialkarzinomen klären. Dieser Mechanismus und seine klinische Bedeutung wurden mit der nun vorliegenden Arbeit eindrucksvoll bestätigt.

Zusätzlich konnte das Team zeigen, dass weitere 40% der Krebszellen ein Protein herstellen, das die Aktivierung des Selbstmord-Programms selbst dann verhindert, wenn TRAIL bindet. Dieses als FLIP bezeichnete Protein unterbindet die von TRAIL im Zellinneren aktivierten Prozesse. Tatsächlich hat FLIP eine ähnliche Struktur wie ein Enzym, das durch TRAIL eigentlich aktiviert werden soll. Eben diese Ähnlichkeit bewirkt, dass TRAIL seine Wirkung auf FLIP ausübt und nicht auf das tatsächlich aktive Enzym.

Zur Häufigkeit dieser Schutzmechanismen meint Dr. Peter Horak, Co-Autor der jetzt veröffentlichten Studie: "Wir haben sogar festgestellt, dass 6 % der untersuchten Krebszellen beide Mechanismen gemeinsam besaßen. Insgesamt haben über 65 % der 68 untersuchten Krebszellen zumindest einen Mechanismus, der es ihnen erlaubt den von TRAIL mediierten körpereigenen Gegenangriffen zu entkommen."

Tumor-Therapie mit TRAIL

Weiterhin fand das Team, dass gerade in Gewebeproben von Patientinnen in fortgeschrittenem Stadium erhöhte Konzentrationen an TRAIL auftraten. Interessanterweise insbesondere im gesunden Gewebe nahe des Tumors. Dazu Prof. Krainer: "Nach bisherigem Erkenntnisstand wird TRAIL vor allem von den Krebs-Zellen selber hergestellt. Gesundes Gewebe der Eierstöcke stellt normalerweise kein TRAIL her. Die von uns nun erstmals beobachtete Präsenz von TRAIL in diesem Gewebe ist als Reaktion auf die Tumorentstehung zu sehen. Der Körper kämpft zurück. Tatsächlich zeigen unsere Daten, dass jene Patientinnen die TRAIL auch in diesem Gewebe produzieren eine höhere Lebenserwartung hatten." Gerade diese letzte Erkenntnis deutet an, dass TRAIL zukünftig auch therapeutisch eingesetzt werden könnte.

Tatsächlich werden derzeit zwei innovative Therapieansätze entwickelt, die beide auf der gesteuerten Aktivierung der TRAIL-bindenden Rezeptoren beruhen. Die jetzt in Clinical Cancer Research publizierten Daten des Teams um Prof. Krainer liefern für beide Ansätze wichtige Informationen zu deren möglicher Wirksamkeit. Denn diese wird sowohl von der körpereigenen Herstellung dieses Signalmoleküls als auch von den nun entdeckten Schutzmechanismen beeinflusst werden.

Originalpublikation: Perturbation of the TRAIL cascade in ovarian cancer: Overexpression of FLIPL and deregulation of the functional TRAIL receptors DR4 and DR5. Horak et al., Clin Can Res., Vol.: pp: 8585-8591 DOI: 10.1158/1078-0432.CCR-05-1276

Wissenschaftlicher Kontakt:
Prof. Dr. Michael Krainer
Medizinische Universität Wien
Österreich
T +43 / 664 / 183 76 77
E michael.krainer@meduniwien.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Prof. Dr. Michael Krainer | www.prd.at
Weitere Informationen:
http://www.meduniwien.ac.at

Weitere Berichte zu: Eierstock-Krebs Krebszelle TRAIL

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten