Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum manche Gehirnzellen bei Parkinson besonders leicht absterben

21.11.2005


Marburger Forscher identifizieren die Öffnung spezieller Kaliumionenkanäle als einen Auslöser für das Absterben von dopaminergen Gehirnzellen - Möglicher Ansatzpunkt für therapeutische Behandlung

... mehr zu:
»Nervenzelle »Neuron »Parkinson

Die Parkinson-Krankheit ist einer der häufigsten neurodegenerativen Erkrankungen - allein in Deutschland sind über 200.000 Patienten betroffen. Ursache für die bei dieser Erkrankung im Mittelpunkt stehenden Bewegungsstörungen ist ein Mangel des Botenstoffs Dopamin im Gehirn, der wiederum eine Folge des Absterbens dopaminproduzierender Nervenzellen ist. Allerdings sterben im Verlauf der Krankheit nicht alle dopaminproduzierenden Nervenzellen im Gehirn ab. Unklar war bisher, warum einige gegenüber der Parkinson-Krankheit resistent, direkt benachbarte Nervenzellen dagegen aber hoch empfindlich sind und fast vollständig absterben.

Zwei Arbeitsgruppen aus dem Institut für Normale und Pathologische Physiologie der Philipps-Universität Marburg unter Leitung von Professor Dr. Birgit Liss und Professor Dr. Jochen Roeper haben, gefördert von der Gemeinnützigen Hertiestiftung, in Kooperation mit der japanischen Universität Kobe nun einen ersten Mechanismus entdeckt, der zu diesen wichtigen Unterschieden führt. Im Tiermodell konnten sie an Mäusen zeigen, dass die Öffnung von bestimmten Kaliumkanälen - "Toren" in der Zellmembran, durch die Kaliumionen fließen können - in den hochempfindlichen dopaminproduzierenden Nervenzellen eine notwendige Voraussetzung für deren Absterben ist. Bei ihren resistenten Nachbarn bleiben diese Tore geschlossen.


Weil diese Kaliumkanäle wie Messfühler des Energiestoffwechels funktionieren, werden sie auch als ATP-sensitive Kaliumkanäle (K-ATP) bezeichnet; ATP ist die "Energiewährung" der Zelle. Öffnen sich die Kanaltore, kann dies das Gehirn zum Beispiel bei Durchblutungsstörungen kurzfristig schützen. Nach den neuen Erkenntnissen von Liss und Roeper hat die Toröffnung aber bei chronisch neurodegenerativen Erkrankungen eine genau gegenteilige Wirkung und fördern das Absterben der besonders empfindlichen Neuronen.

So eröffnen die Ergebnisse der Marburger Forscher, die am 20. November 2005 als Advance Online Publication des renommierten Fachjournals Nature Neuroscience unter dem Titel "K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons" erschienen sind, neue Wege, wie sich bei der Parkinson-Erkrankung die besonders anfälligen Neuronen möglicherweise vor dem Zelltod schützen lassen.

Da die Membrantore für Kaliumionen, die K-ATP Kanäle, offensichtlich die Entscheidung über Leben und Tod von dopaminproduzierenden Neuronen ausschlaggebend beeinflussen können, haben die Wissenschaftler auch die Mechanismen genauer untersucht, die ihr Öffnungsverhalten steuern. Die Ursache für das unterschiedliche Öffnen der Kanäle in empfindlichen und resistenten Neuronen, so zeigen Liss und Roeper, liegt in den Kraftwerken der Zelle, den Mitochondrien: In den resistenten Neuronen sind mehr so genannte Entkopplerproteine vorhanden. Diese Substanzen halten in den Mitochondrien die Balance zwischen Energieproduktion und Erzeugung von freien Radikalen, zwischen jenen Faktoren also, die Schließung beziehungsweise Öffnung der Kanäle bewirken. Entkopplerproteine sind bisher vor allem aus dem braunen Fettgewebe bekannt, wo sie insbesondere bei Säuglingen zur Wärmeerzeugung dienen.

Medikamente, die die Öffnung von K-ATP-Kanälen hemmen, sind in der Therapie des Altersdiabetes (Diabetes mellitus Typ II) bereits millionenfach im Einsatz. Hierbei bewirken sie durch Verschließen des Kaliumtores eine erhöhte Insulinausschüttung. Offenbar gelangen die darin enthaltenen Wirkstoffe, so genannte Sulfonylharnstoffe, aber nicht in ausreichender Konzentration ins Gehirn, um dort bei chronischen Erkrankungen Neuronen zu schützen.

"Künftige Medikamente aber, denen es gelingt, die Blut-Hirn-Schranke zu passieren und das Gehirn zu erreichen", so Liss, "könnten die Neuronen schützen, indem sie das Öffnen der K-ATP-Kanäle in dopaminergen Nervenzellen möglichst zellspezifisch verhindern. So könnten sie das Fortschreiten des Zelltods bei der Parkinson-Erkrankung verzögern."

Derzeit untersuchen die Marburger Forscher im Rahmen des Nationalen Genomforschungsnetzes (NGFN) - in Kooperation mit Professor Dr. Wolfgang Oertel, Direktor der Klinik für Neurologie am Universitätsklinikum Gießen und Marburg, sowie Professor Dr. Thomas Gasser, Ärztlicher Direktor der Abteilung "Neurologie mit Schwerpunkt neurodegenerative Erkrankungen" an der Neurologischen Universitätsklinik Tübingen -, ob Patienten, die besonders früh an Morbus Parkinson erkranken, genetische Variationen des K-ATP Kanals besitzen, die dazu führen, dass sich dieser besonders leicht öffnet.

Kontakt
Professor Dr. Birgit Liss:
Philipps-Universität Marburg,
Institut für Normale und Pathologische Physiologie,
Deutschhausstraße 1-2,
35037 Marburg,
Tel.: (06421) 28 66582,
E-Mail: birgit.liss@staff.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Nervenzelle Neuron Parkinson

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics