Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamantenscharf mit Zucker Knochen schneiden

25.09.2001


Medizinische Hochschule und Universität Hannover entwickeln zukunftsweisendes Verfahren

Das Rezept des Erfolges ist einfach: Wasser, Luft und Zucker. Ein Menschenknochen liegt auf Styropor in einem Wasserbecken, ein Strahl aus Wasser, Luft und Zucker schneidet millimetergenau Knochenstücke ab, ein seltsamer Geruch liegt in der Luft. Diese Szene stammt nicht aus einem Medizinerfilm, sondern aus dem Wasserstrahllabor des Instituts für Werkstoffkunde (Leiter Prof. Dr.-Ing. Friedrich-Wilhelm Bach). Die Ingenieure forschen gemeinsam mit Ärzten der Medizinischen Hochschule Hannover an einem Qualitätsschnitt am Oberschenkelknochen für einen verbesserten und passgenauen Halt von Knieendoprothesen.

"Mit unserer Technik können Qualitätsschnitte erzeugt werden. Mit dem bisherigen Fräsen und Sägen hängen wir Entwicklungsschritten hinterher. Hierbei ist eine Standzeit von zwölf bis 14 Jahren zu erwartet, das bedeutet für jüngere Patienten eine erhöhte Rate von Wechseloperationen. Mit der neuen Methode könnten wir eine Verlängerung der Standzeit erreichen", erläutert Dr. Stephan Schmolke, Facharzt für Orthopädie aus der Medizinischen Hochschule nur einige Vorteile der neuen Entwicklung.

"Die Schneidmethode ist denkbar einfach: Was bisher noch Leitungswasser ist, wird später sterilisierte Spülflüssigkeit sein. Nachdem das Wasser in einer Düse entspannt wurde, wird dem Wasserstrahl in einer Mischkammer Abrasivmittel (Schleifmittel) über eine Schlauchleitung zugeführt. Als Abrasivmittel dient momentan feinkristalliner Zucker, wobei in Zukunft auch andere biokompatible Zuckerersatzstoffe erforscht werden", erklärt Dipl.-Ing. Frank Pude die Zutaten.

Löst sich Zucker nicht eigentlich in Wasser auf? Ja, aber nicht bei diesem Verfahren. Der Druck liegt bei 750 bis 1500 bar oder anders ausgedrückt: Die Kristalle erreichen eine Geschwindigkeit von bis zu 250 Metern pro Sekunde, die Verweildauer im Wasser ist also zu kurz. Nur der Schall ist mit 330 Meter pro Sekunde noch schneller. Ein weiterer Pluspunkt dieser innovativen Methode ist der Zucker selbst, denn er ist ein körperverträglicher Stoff, der abgebaut werden kann und nicht als Fremdstoff angesehen wird. "Die Vorteile unserer Methode sind noch vielfältiger: Es gibt geringe Prozesskräfte. Geräte wie Bohrer erfahren bei der alten Methoden Rückstoßkräfte, die durch den Widerstand auf dem Knochen entstehen. Teilweise sind sie so stark, dass sich die Handhabungsgeräte wie beispielsweise Roboter ausschalten und sich die Operationszeiten verlängern. Bei der erforschten Wasserstrahlmethode kommt es nicht zu dieser Komplikation. Ein weiterer Pluspunkt: Durch die Arbeit mit Wasser gibt es keinen thermischen Einfluss auf das umliegende Gewebe. Die Chance, dass das Gewebe biologisch aktiv bleibt und es damit zu einem schnellen Einwachsen in die Prothese kommt, ist bei dieser Methode um ein Vielfaches höher", stellt Prof. Dr. Carl-Joachim Wirth von der Medizinischen Hochschule Hannover dar.

Wann brauchen Menschen eine Prothese? "Die häufigsten Indikationen für eine Prothese sind Verschleißerscheinungen an Gelenken, die durch Fehlstellungen, Knochenbrüche, Rheuma oder auch Arthrose entstehen", erläutert Dipl.-Ing. Ludger Kirsch vom Biomechaniklabor der MHH. Allein an Arthrose leiden in Deutschland zurzeit etwa fünf Millionen Menschen, betroffen sind vor allem Hüft- und Kniegelenke sowie die Wirbelsäule. Helfen Schmerzmittel und Krankengymnastik nicht mehr, steht oft die Operation und ein Gelenkersatz auf dem Plan.

Am Knie können die hannoverschen Forscher in Zukunft helfen. Die Schneide-Experten haben sich als erstes das Knie vorgenommen, denn dieses Gelenk ist am besten zugänglich. Schon in fünf Jahren könnte ein Teil der jährlich 60.000 Prothesen nach dieser Methode angepasst werden.

"Keine andere Hochschule oder Klinik in Deutschland und international forscht so intensiv an dieser Möglichkeit der neuen Operationsmethode wie die Ingenieure und Mediziner hier", erläutert Prof. Dr.-Ing. Hartmut Louis, Leiter des Wasserstrahllabors der Universität Hannover. Die Kooperation zwischen Ingenieuren und Medizinern kam durch die Neubildung des Zentrums für Biomedizintechnik zustande.

An der Universität Hannover forscht der Bereich Wasserstrahllabor seit mehr als 30 Jahren auf dem Gebiet Wasserstrahltechnologie. In einem Forschungsvorhaben, gefördert von der Deutschen Forschungsgemeinschaft (DFG), untersuchen die Wissenschaftler bereits die Bearbeitung von Knochenzement, um gelockerte Hüftgelenksprothesen besser aus dem Knochenschaft entfernen zu können. Hierbei arbeiteten die Hannoveraner mit Forschern im Allgemeinen Krankenhaus in Barmbek zusammen. Die in Hamburg beteiligten Mediziner und Techniker unterstützen das Team in Hannover auch bei den aktuellen Forschungsarbeiten.

Wenn die Entwicklung der hannoverschen Ingenieure und Mediziner ausgereift ist, könnten die Anwendungsbereiche vielseitig sein, Vorbereitungen zur Anpassung von Prothesen an Finger und Fuß wären denkbar. Auch der Einsatz anderer Abrasivmittel ist denkbar, wie zum Beispiel Zuckerersatzstoffe oder Salze.

Monika Wegener | idw

Weitere Berichte zu: Abrasivmittel Prothese Wasserstrahllabor

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie