Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trends der Impfstoff-Forschung

17.09.2001


Die Impfstoff-Forschung war ein Thema während des Berliner Wissenschaftssommers. Ein Gespräch mit Professor Stefan Kaufmann vom Berliner Max-Planck-Institut für Infektionsbiologie. Er ist Koordinator eines Schwerpunktprogrammes der Deutschen Forschungsgemeinschaft.

Warum ist die Impfstoff-Forschung wichtig?

Weltweit wird ein Drittel aller Todesfälle durch Infektionskrankheiten verursacht. In der Todesursachenstatistik rangieren diese Erkrankungen noch vor Krebs. Jährlich sterben an ihnen 17 Millionen Menschen. Denn nach wie vor können wir Menschen noch nicht gegen große "Killer" wie Aids, Tuberkulose oder Malaria mit Hilfe von Impfstoffen schützen. Denn diese Erreger sind besonders kompliziert und trickreich. Mit ausgeklügelten Strategien können sie der körpereigenen Abwehr entgehen. Mit den bislang üblichen Methoden kommen wir daher nicht weiter. Die Impfstoff-Entwicklung muss an den rasanten Erkenntnisfortschritt der Grundlagenforschung angekoppelt werden.

Welche Strategien verfolgen Sie und Ihre Kollegen zur Zeit in der Impfstoff-Forschung?

Da gibt es verschiedene Ansätze. Zum einen versuchen wir, so genannte rekombinante Impfträger zu entwickeln. Dabei handelt es sich beispielsweise um abgeschwächte Bakterien, denen wir zusätzlich Gene mit der Bauanleitung für ein oder mehrere Antigene fremder Krankheitserreger einpflanzen. Diese Antigene aktivieren das Immunsystem und können so eine Infektion verhüten. Eine andere Strategie sind so genannte DNA-Vakzine. Diese Impfstoffe bestehen aus einem Stück Erbsubstanz des Erregers, welches für eines oder mehrere Impfantigene kodiert.

Was ist der Vorteil der rekombinanten Impfträger?

Man setzt Impfträger ein, von denen wir wissen, dass sie eine starke Immunantwort auslösen können. Dazu sind etwa Salmonellen in der Lage. Sie überleben lange genug im Körper, um einen ausreichend starken und lang anhaltenden Schutz zu bewirken. Darum gibt es auch bereits einen Impfstoff gegen Salmonellen aus abgeschwächten Erregern. Diese abgeschwächten Erreger bieten sich daher als Trägersysteme an. Mann kann Antigene von komplizierten Krankheitserregern, von denen sich nicht ohne weiteres Impfstämme ableiten lassen, übertragen.
Um die Verfügbarkeit der Antigene zu verbessern, haben wir Impfstoffträger beispielsweise mit einem aktiven Sekretionssystem ausgerüstet. Dadurch werden die Impfantigene von den Bakterien ausgeschleußt und sofort dem Immunsystem präsentiert.


Aus Experimenten wissen wir, dass lediglich solche ausgeschleußten Antigene Schutz bieten. Bleiben die gleichen Antigene im Impfträger eingeschlossen, sind sie hingegen unwirksam.
Darüber hinaus untersuchen wir zur Zeit verschiedene rekombinante Impfträger, die eingebaute Antigene auf unterschiedliche Art präsentieren. Denn es kommt auch darauf an, dass diese Träger die Antigene sowohl Helfer- als auch Killer-T-Zellen des Immunsystems gleichermaßen anbieten. Dann können sie als Träger von Impf-Antigenen gegen unterschiedliche Erkrankungen, etwa Bakterien, Parasiten oder Viren, dienen.

Was ist der Vorteil von DNA-Vakzinen?

Diese Impfstoffe bestehen nur aus einem Stück Erbsubstanz des Erregers, das für das schützende Antigen kodiert. Dieses wird in ein kleines ringförmiges DNA-Molekül, ein Plasmid, eingebaut. Dieses Plasmid enthält zusätzlich Kontrollelemente, die die Zellen des Impflings "verstehen". Die DNA-Vakzine wird zum Beispiel in die Muskulatur gespritzt, wo die Zellen die DNA aufnehmen und nach deren Bauanleitung die entsprechenden Eiweißmoleküle zusammenbauen. Die Strategie wird international zur Verhütung aber auch Behandlung zahlreicher Infektionskrankheiten erprobt, etwa gegen HIV. In den USA sind bereits klinische Studien mit freiwilligen Versuchpersonen angelaufen.
Allerdings müssen noch etliche Probleme gelöst werden. DNA-Vakzine sind nur schwach wirksam. Während die rekombinanten Impfstoff-Träger ihre eigenen "Verstärker" haben, die die Immunantwort intensivieren, ist dies bei den DNA-Impfstoffen nicht der Fall. Sie müssen in zu großen Mengen eingesetzt werden, um wirksam zu sein. Wir sehen darum nur schwache Immunantworten im Menschen. Aber das ist lösbar. Wir setzen ein "Verpackungssystem" ein, durch das wir die erforderlichen Impfdosen um den Faktor zehn bereits reduzieren können. Außerdem ist noch nicht ganz ausgeschlossen, dass sich diese Impfstoffe in die Erbsubstanz der Zellen des Impflings integrieren könnte. Bislang wurde dies zwar noch nicht beobachtet, aber wenn es doch geschehen sollte, kann dies schädlich sein, wenn dadurch wichtige Abschnitte des Erbguts inaktiviert oder potenziell gefährliche Gene aktiviert werden.

Barbara Ritzert | idw
Weitere Informationen:
http://www.wissenschaftssommer2001.de/h

Weitere Berichte zu: Antigen DNA-Vakzine Erbsubstanz Immunsystem Impfstoff Impfstoff-Forschung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops