Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lupe für den Urknall

21.08.2001


Sensorchip

Fotograf: AG Wermes


Prof. Wermes präsentiert eine Leiste mit Chips

Fotograf: Frank Luerweg/Universität Bonn


Einen äußerst schnellen und genauen Detektor für geladene Teilchen haben Experimentalphysiker der Universität Bonn entwickelt. Der Sensor soll bei Beschleuniger-Experimenten in Genf zum Einsatz kommen, mit denen man Reaktionen studiert, die Bruchteile von Sekunden nach dem Urknall stattgefunden haben. Doch auch in der Medizin lässt sich die Neuentwicklung nutzbringend einsetzen: Zum Beispiel als hochempfindlicher und extrem kontrastreicher "digitaler Röntgenfilm", der bei verringerter Strahlendosis bessere Ergebnisse liefern kann als herkömmlicher Röntgenfilm.

An der Grenze zwischen Frankreich und der Schweiz gehört der Urknall zum Alltag. Regelmäßig kommt es hier zum gewaltigen Crash: Mit unvorstellbarer Energie schießen die Physiker des Europäischen Labors für Teilchenphysik CERN in einem Detektor von der Größe eines fünfstöckigen Hauses positiv geladene Teilchen, die Protonen, aufeinander. Dabei kommt es zu Reaktionen, wie man sie auch in der Geburtsstunde des Universums hätte beobachten können. "Natürlich können wir im Labor nicht die gleichen heißen Bedingungen erzeugen, wie sie unmittelbar nach dem Urknall herrschten", schränkt Professor Norbert Wermes ein. "Aber den Ablauf der dabei erfolgten Reaktionen können wir schon unter die Lupe nehmen".

Die Arbeitsgruppe um den Bonner Experimentalphysiker beteiligt sich am sogenannten ATLAS-Experiment - zusammen mit 150 weiteren Instituten aus insgesamt 34 Ländern. Die Wissenschaftler der Rheinischen Wilhelms-Universität entwickeln Detektoren, mit denen sie weit in die Vergangenheit blicken können. Denn beim Crashtest im Beschleuniger wandeln sich die Kontrahenten in neue Teilchen um, deren Eigenschaften viel über die Anfänge unseres Universums vor etwa 15 Milliarden Jahren verraten. Diese Reaktionsprodukte zu orten, hat sich Wermes’ Arbeitsgruppe auf die Fahnen geschrieben - keine ganz einfache Aufgabe: Pro Sekunde kommt es zu 40 Millionen Zusammenstößen; dabei entstehen jeweils durchschnittlich 1.600 Teilchen, die nachgewiesen werden müssen. Bei der Auswertung will man sich aber in der Regel nur auf die Reaktionsprodukte weniger besonders interessanter Crashs konzentrieren und die anderen ausblenden.

Die Mitarbeiter um Prof. Wermes und Dr. Peter Fischer haben dazu einen Detektor entwickelt, der die entstehenden Teilchen auf einen hundertstel Millimeter genau orten kann -und das gleich vierzigmillionenmal pro Sekunde. Wie der Lichtsensor einer Digitalkamera besteht er aus haarfeinen viereckigen Zellen, die wabenartig nebeneinander angeordnet sind, den sogenannten Pixeln. "Durchquert ein Teilchen einen Pixel, sendet dieser Ort, Zeit und Signalgröße an den Rand der Elektronikchips, wo die Messwerte in schnelle Lichtsignale umgewandelt und durch optische Fasern zum Computer geschickt werden", erläutert Wermes. In mehreren Ebenen zylinderförmig um den Entstehungsort der Reaktion angeordnet, liefert der Pixel-Detektor so die Punkte einer Teilchenspur, mit deren Hilfe die Urknallforscher rekonstruieren können, was genau sich beim Crash im Beschleuniger zugetragen hat.

Die Geburtswehen des Universums "sind undenkbar weit entfernt von unseren Alltagsnotwendigkeiten", gibt Wermes zu. Doch gerade aus der Grundlagenforschung erwachsen immer wieder praxisnahe Anwendungen, die sich im Vorfeld nicht absehen ließen. Die Bonner Experimentalphysiker nutzen ihr Know-How inzwischen auch für biomedizinische Anwendungen. "Wir haben unseren Detektor mit einem schnellen Zähler in jeder Pixelzelle gekoppelt - damit rückt der digitale Röntgennachweis in greifbare Nähe." Der Detektor zählt die Röntgenquanten, die auf jeden Pixel auftreffen. Aus dem Ergebnis kann der Computer dann ein Röntgenbild berechnen. Anders als bei normalem Filmmaterial gibt es beim digitalen Pendant keine Überbelichtung. Prinzipiell ist es egal, wie viel Strahlung auf einen Pixel trifft - der Zähler zählt alles, was da kommt, vorausgesetzt, er ist schnell genug. "Das Kontrastverhalten unseres Films ist unübertroffen - wahrscheinlich lassen sich daher mit niedrigeren Strahlendosen ähnlich gute Bilder erzielen wie heute auf normalem Röntgenfilm. Außerdem entfällt die Zeit für die Filmentwicklung", begeistert sich Wermes. Bis das Verfahren die konventionelle Röntgentechnologie ablöst, wird aber wohl noch eine Weile vergehen - schließlich hat der normale Film mehr als einhundert Jahre Vorsprung.


Weitere Informationen: Prof. Dr. Norbert Wermes, Physikalisches Institut der Universität Bonn, Tel.: 0228/73-3533, Fax: 73-3220, E-Mail: wermes@physik.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.physik.uni-bonn.de/~wermes

Weitere Berichte zu: Urknall

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

nachricht Ein neuer Ansatz bei Hyperinsulinismus
18.09.2017 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie