Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gezielt aus dem Takt gebracht - Durchbruch bei Hirnschrittmachern

28.04.2005


Wenn Parkinsonkranken unkontrollierbar die Hände zittern, liegt das daran, dass bestimmte Zellen in ihrem Gehirn fortwährend im selben Takt feuern. Unterbrechen lässt sich diese synchrone Aktivität der Nervenzellen mit so genannten Hirnschrittmachern feinen Elektroden im Hirn, welche die Tätigkeit der betroffenen Nervenzellen mit elektrischen Dauer-Impulsen stoppen. Wissenschaftler des Instituts für Medizin (IME) des Forschungszentrums Jülich entwickelten jetzt ein neues Verfahren, das nur einen verschwindend geringen Reizstrom benötigt, um die betroffenen Nervenzellen aus dem Takt zu bringen. Es ist daher zu erwarten, dass es deutlich schonender für die Patienten sein wird.

Hirnzellen, die zusammenarbeiten, stimmen sich untereinander ab sie schwingen im selben Rhythmus. Doch allzu viel Übereinstimmung ist von Übel. Um fein koordinierte Muskelbewegungen zu steuern, müssen die Neuronen sozusagen genau abgestimmte Figuren nacheinander tanzen. Stampfen sie stattdessen wie eine Marschkolonne stur im gleichen Tritt, kommt es zum Tremor dem charakteristischen Zittern, das bei der Parkinson-Krankheit und einigen angeborenen Bewegungsstörungen auftritt.

Seit einigen Jahren können die Patienten, wenn Medikamente nicht ausreichend wirken, mittels tiefer Hirnstimulation vom Tremor befreit werden. Dafür werden ihnen durch winzige Löcher im Schädel Elektroden eingesetzt, die ständig Signale mit hoher Frequenz aussenden und so die übermäßig synchron arbeitenden Neuronen stoppen. Dieses Verfahren kann aber zu Nebenwirkungen führen. Außerdem gibt es Patienten, bei denen die therapeutische Wirkung der tiefen Hirnstimulation von Anfang an nicht ausreichend ist oder im Laufe der Behandlung nachlässt.

Die Forscher des IME arbeiten daher an einem bedarfsgesteuerten Hirnschrittmacher, der nur dann Störsignale sendet, wenn die Hirnzellen beginnen krankhaft im gleichen Takt zu feuern. In den Physical Review Letters berichten die Wissenschaftler jetzt über einen entscheidenden Fortschritt ihrer Arbeit. "Der Schrittmacher misst die synchrone Aktivität der Neuronen und sendet dieses Signal ständig mit einer kurzen Zeitverzögerung wieder in die Hirnzellen zurück", erläutert Prof. Peter Tass, der am IME die Arbeiten zum Hirnschrittmacher leitet. Die Zellen stolpern gleichsam über diese Rückkopplung, geraten aus dem Takt und die Synchronisation reißt ab, ehe sich noch richtig begonnen hat. Entscheidend dabei ist, dass die Zellen nicht einfach ein zeitversetztes Echo ihrer Aktivität empfangen. Das Signal wird zuvor mit sich selbst sowie mit einer zeitverzögerte Kopie multipliziert die Wissenschaftler sprechen von "nichtlinearer Verarbeitung". Das Echo wird sozusagen verzerrt, ehe es ins Hirn zurückgeleitet wird. Die Nervenzell-Gruppe und der Schrittmacher bilden gemeinsam ein System, das dann am stabilsten ist, wenn die Zellen nicht synchron feuern das vom Schrittmacher eingespeiste Echo ist daher die meiste Zeit verschwindend gering.

"Unser Verfahren hat verblüffende Eigenschaften, die gerade für die klinische Anwendung extrem wichtig sind", berichtet Tass. "Es ist sehr schonend, denn stimuliert wird nur ganz kurz, wenn die synchrone Aktivität der Hirnzellen einsetzt. Außerdem ist das System auf phantastische Weise robust. So funktioniert es auch dann hervorragend, wenn sich die Frequenzen verändern, mit denen die Neuronen feuern." Auch ist bei diesem Verfahren ausgeschlossen, dass die Rückkopplung unbeabsichtigt die Synchronisation verstärkt. Das geschieht, wenn das Signal ohne "Verzerrung" nur zeitversetzt an die Nervenzellen zurückgesendet wird. "Ein weiterer Vorteile unseres Verfahrens ist, dass es keine aufwändige Steuerelektronik benötigt, welche ständig berechnet, ob erneut stimuliert werden muss", hebt Tass hervor. Den die Zellen erzeugen das Störsignal ja durch ihre synchrone Aktivität selbst just in time.

Damit ist das neue Verfahren ein entscheidender Durchbruch in der Weiterentwicklung von Hirnschrittmachern. Bisher wurde es theoretisch entwickelt und in Computersimulationen getestet. In den nächsten Monaten wird es am Tiermodell erprobt, spätesten im nächsten Jahr sollen klinischen Versuche beginnen.

Annette Stettien | FZ Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Hirnschrittmacher Hirnzelle Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Eine Teleskopschiene für Nanomaschinen
20.04.2018 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

nachricht Künstlicher Leberfleck als Frühwarnsystem
19.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Birke, Kiefer, Pappel – heilsame Bäume

20.04.2018 | Unternehmensmeldung

Licht macht Ionen Beine

20.04.2018 | Physik Astronomie

Software mit Grips

20.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics