Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert das Innenohr? - Neue Erkenntnisse aus der Grundlagenforschung

15.03.2005


Die Fähigkeit Sprache zu verstehen, stellt große Anforderungen an die Signalverarbeitung im Innenohr. Neben der Empfindlichkeit (Lautstärke) ist die hohe Frequenzauflösung (Unterscheidung von Tönen) im Alltag von besonderer Bedeutung. Bereits bei kleinen Veränderungen des sensorischen Gewebes, z.B. durch Krankheit oder Lärmtrauma, werden Empfindlichkeit und Frequenzauflösung schlechter. Bislang können Innenohrschäden nicht genau diagnostiziert und therapiert werden. Hörgeräte beheben Defekte nur begrenzt - sie können die normale akustische Wahrnehmung nie wieder herstellen. Damit den Patienten künftig besser geholfen werden kann, ist ein genaueres Verständnis der Mikroelektromechanik im Innenohr, insbesondere des so genannten cochleären Verstärkers nötig.



Prof. Anthony Gummer und Dipl.-Phys. Marc Scherer von der Tübinger Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde haben durch mechanische und elektrische Untersuchungen am Corti`schen Organ, einem zentralen Teil des cochleären Verstärkers, einen Teilmechanismus entdeckt, durch den die Verstärkung bei hohen Frequenzen (50 kHz) funktioniert. Sie konnten zeigen, dass das Deformationsmuster des Corti`schen Organs wellenförmig und nicht wie bis jetzt angenommen gleichförmig ist und dass die Kraftentwicklung der äußeren Haarzellen eine Resonanz oberhalb 10 kHz aufweist. Die Ergebnisse ihrer Untersuchungen sind in Proceeding of the National Academy of Sience of the USA* erschienen.

... mehr zu:
»Haarzelle »Organ


In Deutschland leiden 15 bis 19 Prozent der Bevölkerung an einem Innenohrschaden, der Tinnitus und/oder Schwerhörigkeit zur Folge hat. Diese Erkrankungen können bislang weder exakt diagnostiziert noch ursächlich behandelt werden, da das Innenohr nicht geöffnet werden kann, ohne es zu zerstören. Deshalb ist auch die Funktionsweise des Organs bis heute nicht vollständig verstanden.

Prof. Anthony Gummer und Dipl.-Phys. Marc Scherer konnten mit ihrer Untersuchung des Corti`schen Organs elementare Fragen zur Funktion des Innenohrs und speziell des cochleären Verstärkers beantworten. Der cochleäre Verstärker ist ein Mechanismus: Darunter versteht man die Erzeugung von mechanischer Kraft bei akustischen Frequenzen durch spezialisierte Zellen (äußere Haarzellen) und die Rückkopplung dieser Kraft in die Vibration des sensorischen Gewebes (cochleäre Partition). Diese Verstärkung führt zu einer deutlichen Zunahme von Empfindlichkeit und Frequenzauflösung und ist somit die Basis für die normale Funktion des Innenohrs. Die äußeren Haarzellen sind ins Corti`sche Organ eingebettet.

Die beiden Forscher konnten an verschiedenen Stellen des Corti`schen Organs die elektromechanischen Eigenschaften und das Deformationsmuster bis zu Frequenzen von 50 kHz messen. 50 kHz ist die oberste Frequenzgrenze der meisten Säugetierohren (Ausnahme: Fledermaus). Bis jetzt war es technisch nicht möglich, bei so hohen Frequenzen Messungen vorzunehmen.

Es zeigte sich, dass sich das Corti`sche Organ unter der Einwirkung der Kraft, die von den äußeren Haarzellen erzeugt wird, nicht wie bis jetzt angenommen als ganzes vergrößert, sondern dass sich das Gewebe wellenartig verformt. Außerdem fanden die Forscher, dass die äußeren Haarzellen deutlich breitbandiger verstärken als man ursprünglich anhand von Untersuchungen an Einzelzellen angenommen hatte. Dadurch wurde teilweise klar, wie der cochleäre Verstärker über den gesamten Hörbereich funktioniert. Das bedeutet einen weiteren wichtigen Schritt zum vollständigen Verständnis des Innenohrs.

Die Ergebnisse von Prof. Gummer und Dipl.-Phys. Scherer sind wichtige Grundlagen für die Entwicklung neuer Methoden der Diagnose und Behandlung von Erkrankungen des Innenohrs.

Ansprechpartner für nähere Informationen:

Universitätsklinikum Tübingen
Klinik für Hals-, Nasen- und Ohrenheilkunde,
Sektion Physiologische Akustik und Kommunikation
Prof. Anthony W. Gummer
Dipl.-Phys. Marc Scherer
Elfriede-Aulhorn-Str. 5, 72076 Tübingen
Tel. 0 70 71/29-8 81 91, Fax 0 70 71/29-41 74
E-Mail anthony.gummer@uni-tuebingen.de

* Originaltitel der Publikation: "Vibration pattern of the organ of Corti up to 50 kHz: Evidence for resonant electromechanical force" in Proceeding of the National Academy of Sience of the USA, Band 101, Seite: 17652-17657.

Dr. Ellen Katz | idw
Weitere Informationen:
http://www.medizin.uni-tuebingen.de/

Weitere Berichte zu: Haarzelle Organ

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gefäßregeneration: Wie sich Wunden schließen
12.12.2017 | Medizinische Hochschule Hannover

nachricht Mit 3D-Zellkulturen gegen Krebsresistenzen
11.12.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie