Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Würzburger Forscher sehen Nerven beim Nachwachsen zu

03.03.2005


Bericht im US-Fachblatt "Annals of Neurology"

... mehr zu:
»MRT »Nerv »Nervenfaser

Wissenschaftlern von der Uni Würzburg ist es erstmals gelungen, im lebenden Organismus das Nachwachsen beschädigter Nerven sichtbar zu machen. Das schafften sie mit Hilfe eines neuartigen Kontrastmittels für die Magnetresonanz-Tomographie. Ihre Arbeiten können dazu beitragen, dass sich Verletzungen peripherer Nerven künftig besser behandeln lassen.

Wenn Nervenbahnen zum Beispiel durch Schnittverletzungen geschädigt werden, so führt das zu einem Ausfall der Impulsübertragung vom Gehirn zu den nachgeschalteten Muskel- und Hautarealen. Entsprechend leiden die Patienten an Lähmungen oder einem Verlust des Berührungsempfindens.


Im Bereich von Gehirn und Rückenmark sind solche Schäden irreparabel - man denke etwa an Querschnittslähmungen. Dagegen können die Nervenfasern im übrigen, so genannten peripheren Nervensystem nachwachsen. In diesem Fall gehen die Lähmungserscheinungen nach einiger Zeit zurück.

"Das geschieht aber sehr langsam, denn die Nervenfasern wachsen pro Tag nur etwa einen Millimeter", erklärt der Würzburger Wissenschaftler Martin Bendszus. Wird zum Beispiel im Bereich des Beckens ein Nerv verletzt, der den Unterschenkelmuskel versorgt, dann kann es Jahre dauern, bis eine Besserung eintritt. Hinzu kommt, dass die Ärzte in dieser Zeit mit anderen Methoden nicht ausreichend sicher beurteilen können, ob der Nerv wirklich nachwächst oder ob er durch ein Auseinanderklaffen seiner Enden im Wachstum behindert wird. "Im letzteren Fall wäre ein frühzeitiges neurochirurgisches Eingreifen erforderlich", sagt Bendszus.

Diese Unsicherheit wollen die Wissenschaftler von der Abteilung für Neuroradiologie und der Neurologischen Klinik der Uni Würzburg beseitigen. Erster Erfolg: Mit Hilfe der Magnetresonanz-Tomographie (MRT) konnten sie erstmal experimentell im lebenden Organismus dem Nachwachsen geschädigter Nerven zusehen. Durch die MRT lassen sich exakte Bilder aus dem Körper gewinnen.

Möglich wurde dieser Fortschritt durch das neuartige Kontrastmittel Gadofluorine M der Schering AG (Berlin). Wird das Mittel intravenös verabreicht, dann sammelt es sich ausschließlich in geschädigten Nervenabschnitten an und lässt diese in den MRT-Bildern weiß aufleuchten. Wenn die Nerven bei ihrer Regeneration auswachsen, verschwindet das Mittel. Verharren sie aber im Zustand der Schädigung, weil die Enden der Nervenfasern auseinanderklaffen und darum keine Orientierung mehr haben, so bleibt das Kontrastmittel über lange Zeit im Nerv erhalten. Bendszus: "Damit lässt sich erstmalig der aktuelle Stand des Nervenwachstums räumlich und zeitlich exakt bildlich darstellen."

Die Ergebnisse dieser experimentellen Studie wurden im US-Fachjournal "Annals of Neurology" veröffentlicht. Jetzt will die von Bendszus und Guido Stoll geleitete Würzburger Arbeitsgruppe "Molekulares Neuroimaging" die neue MR-Technik in Kooperation mit Schering weiter nutzbar machen: Für die Diagnostik von Nervenverletzungen und Polyneuropathien beim Menschen.

"Assessment of Nerve Degeneration by Gadofluorine M-Enhanced Magnetic Resonance Imaging", Martin Bendszus, Carsten Wessig, Ansgar Schütz, Tanja Horn, Christoph Kleinschnitz, Claudia Sommer, Bernd Misselwitz, und Guido Stoll, Annals of Neurology 2005; 57: Seiten 388-395. Online publiziert am 24. Februar 2005, DOI 10.1001/ana.20404

Weitere Informationen:

PD Dr. Martin Bendszus
T (0931) 201-34790
E-Mail: bendszus@neuroradiologie.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: MRT Nerv Nervenfaser

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics