Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tissue Engineering: Menschliches Gewebe aus dem Bioreaktor

14.02.2005


Die Züchtung von funktionsfähigem Gewebe aus körpereigenen Zellen zur Reparatur geschädigter Herzklappen oder anderer Strukturen des Herzens oder der Luftröhre zeigt ermutigende Fortschritte. Die Herstellung lebender, mitwachsender Herzklappen aus körpereigenen Zellen zum Beispiel brächte nicht nur in der Kinder-Herzchirurgie einen Durchbruch, damit würden auch die Beschränkungen der gegenwärtig verfügbaren Herzklappen aus Kunststoffen oder aus biologischen Materialien überwunden.



"Gute Fortschritte machen derzeit die Studien zum Tissue Engineering von Herzklappen", berichtete Prof. Dr. Axel Haverich auf der 34. Jahrestagung der Deutschen Gesellschaft für Thorax-, Herz-und Gefäßchirurgie in Hamburg. Ein Ziel der regenerativen Medizin bestehe darin, mittels Tissue Engineering - also der Gewebezüchtung - künftig funktionsfähiges Gewebe aus körpereigenen Zellen im Labor zu züchten und anschließend Patienten per Transplantation einzupflanzen, um auf diesem Weg nicht fehlendes oder erkranktes Gewebe zu ersetzen. Das im Bioreaktor hergestellte Gewebe wird mit der Zeit dem natürlichen Umfeld immer ähnlicher. "Hier sind im Wesentlichen die Herzklappen, Herzmuskel und die Luftröhre Ziel der gegenwärtigen Untersuchungen", führte der Herz- und Transplantationschirurg von der Medizinischen Hochschule Hannover aus.



Herzklappen wachsen nach Implantation im Kindesalter voraussichtlich mit dem Patienten

Im Zusammenhang mit dem Tissue Engineering von Herzklappen seien experimentelle Arbeiten im Großtier bereits weit fortgeschritten, erste klinische Anwendungen würden durchgeführt, fasste Prof. Haverich die die aktuelle Situation zusammen: "Dabei werden im Wesentlichen biologische Grundstrukturen von verstorbenen Menschen oder Tieren als Matrix mit Gefäßzellen des späteren Transplantat-Empfängers besiedelt. Erste klinische Versuche legen nahe, dass diese Klappen nach Implantation im Kindesalter in der Tat mit dem Patienten mitwachsen."

Die Herstellung lebender Herzklappen aus körpereigenen Zellen brächte nicht nur in der Kinder-Herzchirurgie einen Durchbruch, damit würden auch die Beschränkungen der gegenwärtig verfügbaren Herzklappen aus Kunststoffen oder aus biologischen Materialien überwunden.

Erfolgreiche Herstellung von Herzmuskelgewebe bei Klein- und Großtieren

Auch experimentelle Untersuchungen zur Herstellung von Herzmuskelgewebe seien inzwischen weit fortgeschritten, führte Prof. Haverich aus: "Die Besiedlung verschiedenartiger biologischer oder künstlicher Grundstrukturen mit patienteneigenen Zellen zur Herstellung funktionsfähigen Herzmuskelgewebes haben aber noch nicht den Weg in die Klinik gefunden. Denn die Herzmuskelzellen des Erwachsenen lassen sich derzeit in Kultur noch nicht vermehren, weshalb eine Konstruktion funktionsfähigen Herzmuskelgewebes klinisch noch nicht verwirklicht wurde." Im Tierexperiment hingegen konnten eine Reihe wichtiger Fortschritte erzielt werden, indem solche besiedelten Matrizes bereits in Klein- und Großtieren erfolgreich eingesetzt wurden.

Klinisch wird zum Ersatz erkrankten Herzmuskelgewebes zum Beispiel bei Neugeborenen oder Infarktpatienten die Erschaffung einer mit Blutgefäßen versehenen ("vaskularisierten") Matrix Voraussetzung sein. Prof. Haverich: "Hier erzielten Verfahren des Tissue Engineering im vergangenen Jahr erhebliche Fortschritte in dem Sinne, dass solche Matrizes, die eine ausreichende Versorgung der aufgebrachten Zellen mit Sauerstoff und Nährstoffen sicherstellen, zum Ersatz von rechtem Vorhof und rechter Herzkammer eingepflanzt wurden. Durch den Mangel an besiedelbaren Zellen beim Menschen war dies bisher klinisch nicht möglich, allerdings sind solche vaskularisierten Matrizes bei einzelnen Patienten in der Herztumor-Behandlung bereits eingesetzt worden. Dazu wurden Dünndarmabschnitte mit einem Gefäßstiel zum Beispiel zum Ersatz des rechten Vorhofs verwendet."

Teilersatz der Luftröhre mittels Tissue Engineering

Erstmals in Deutschland wurden Patienten vor zwei Jahren mit einem Teilersatz der Luftröhre behandelt, der mittels Tissue Engineering gewonnen wurde. Diese Entwicklung stammt aus den Leibniz Laboratorien der Medizinischen Hochschule Hannover und wurde bei Tumorkranken eingesetzt. Prof. Haverich: "Weitere experimentelle Untersuchungen zur Herstellung von Flicken zur Deckung größerer Defekte bzw. zum Ersatz der gesamten Luftröhre werden derzeit durchgeführt, wobei auch hier die Blutgefäßversorgung des Implantats eine entscheidende Rolle spielt."

Kontakt:
Pressezentrum Congress Centrum Hamburg (CCH): Tel.:(++49) 040-808037-5116
Prof. Dr. Eckart Fleck, Berlin (Pressesprecher der DGK)
Christiane Limberg, Düsseldorf (Pressereferentin der DGK), D-40237 Düsseldorf, Achenbachstr. 43, Tel.: 0211 / 600 692 - 61; Mail: limberg@dgk.org
Roland Bettschart, Bettschart & Kofler Medien- und Kommunikationsberatung GmbH; Mobil: 0043-676-6356775; bettschart@bkkommunikation.at

Christiane Limberg | idw
Weitere Informationen:
http://www.dgk.org
http://www.gstcvs.org

Weitere Berichte zu: Herzklappe Herzmuskelgewebe Luftröhre

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise