Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gene, die ans Herz gehen

14.01.2005


Ein Roboterarm nimmt mit 48 Pins DNA-Proben von Mikrotiter-Platten auf und überträgt sie auf einen Analysechip. Foto: MaxPlanckForschung/MPI für molekulare Genetik. Bild: MaxPlanckForschung/MPI für molekulare Genetik


DNA-Chips als neue Werkzeuge der Medizin / MaxPlanckForschung erschienen
Nach Schätzungen der Weltgesundheitsorganisation starben im Jahr 2003 auf der Erde rund 56 Millionen Menschen - 16 Millionen davon an Herz-Kreislauf-Erkrankungen, vor allem Herzinfarkt, und sieben Millionen an Krebs. Maßgeschneiderte Therapien für diese Krankheiten gehören heute noch ins Reich der Sciencefiction. Gleichwohl ist der Grundstein für die Medizin der Zukunft gelegt: DNA-Chips haben in den vergangenen Jahren die Molekularbiologie einen Schritt vorangebracht. Mit solchen Micro-Arrays spüren Wissenschaftler des Max Planck-Instituts für molekulare Genetik krankhaften Prozessen innerhalb von Zellen nach. Wie sie das tun, darüber berichtet die neue Ausgabe des Wissenschaftsmagazins MaxPlanckForschung (4/2004).

... mehr zu:
»DNA-Chip »Gen »Genetik »Herzfehler


Jegliche medizinische Diagnostik und Therapie arbeitet insofern "oberflächlich", als sie sich jeweils an Symptomen orientiert, an klinischen Bildern und Messwerten, die sich erfahrungsgemäß als typisch für eine bestimmte Krankheit und deren Verlauf erwiesen haben. Doch hinter allen Symptomen stecken am Ende molekulare, auf der Ebene der Gene angesiedelte Fehlinformationen und Fehlsteuerungen - und dorthin vorzudringen und damit wirklich gezielt in pathologische Prozesse eingreifen zu können, ist ein zwar fernes, doch keineswegs utopisches Ziel. Einen wichtigen Schritt in diese Richtung bedeuten die DNA-Chips, mit und an denen Forscher am Berliner Max-Planck-Institut für molekulare Genetik arbeiten: Sie liefern Einblick in die laufende "genetische Datenverarbeitung" von Zellen und erlauben Vergleiche zwischen normalen oder pathologischen Mustern der Gen-Aktivität.

Die Berliner Wissenschaftler haben inzwischen erste "molekulare Porträts" von angeborenen Herzfehlern gewonnen - anatomische Fehlbildungen, mit denen allein in Deutschland jährlich 6000 Kinder zur Welt kommen. Dazu Silke Sperling, Ärztin am Berliner Max-Planck-Institut für molekulare Genetik: "Obwohl die verschiedenen Formen dieser Herzfehler schon lange bekannt sind, wusste man bis vor kurzem fast nichts über deren genetische Ursachen. Und hier haben uns die DNA-Chips enorm vorangebracht. Denn sie erlauben es, eine unglaubliche Menge von genetischen Daten mit einem Schlag zu erfassen."

Ein solcher Chip misst etwa zwei mal fünf Zentimeter. Auf ihn werden durch einen Roboter an vorbestimmten Punkten in Abständen von 130 tausendstel Millimetern jeweils bestimmte DNA-Sequenzen, also Gene, aufgebracht. Am Ende sitzen auf dem Chip dann 30 000 verschiedene, einzelnen Genen entsprechende Proben - die als Bindungspartner für komplementäre, fluoreszenz-markierte DNA-Stücke aus unterschiedlichen Geweben dienen.

Je mehr von der zu prüfenden DNA an die einzelnen Proben auf dem Chip bindet, um so mehr Farbstoff bleibt auch an den entsprechenden Punkten hängen und wird anschließend per Computer erfasst und in ein farbcodiertes Bild umgesetzt. In bunte Punkte, deren unterschiedliche Intensität die Menge bestimmter Gen-Sequenzen in der Probe verrät - und in einem einzigen Experiment wiedergibt, wozu früher Tausende Einzelexperimente erforderlich waren. Auf diese Weise lassen sich "Expressionsprofile" von Stammzellen erhalten, die sich gerade in einen reifen Zelltyp differenzieren. Diese Profile verraten, welche Gene in bestimmten Zellen zum Zeitpunkt der Probenahme aktiv oder "stumm" sind, deren Informationen also gerade abgelesen oder nicht gebraucht werden.

Mit dieser Technik wurden unter anderem auch Gewebeproben von Patienten mit verschiedenen angeborenen Herzfehlern untersucht - zunächst im Hinblick auf die molekularen Hintergründe der verschiedenen Defekte und um irgendwann eine jeweils fallweise abgestimmte Behandlung sowie Ansatzpunkte für neue, spezifische Medikamente zu haben. Doch auch die Frage, mit welcher Wahrscheinlichkeit die Kinder solcher Patienten betroffen sein könnten, hofft man eines Tages beantworten zu können.

Inzwischen haben die Forscher eine Reihe von Gen-Mustern gefunden, die jeweils für angeborene Herz-Defekte mit unterschiedlichen klinischen Bildern typisch sind. Diese veränderten Gene spielen auch nach der Embryonal-Entwicklung eine wichtige Rolle für die Herzfunktion - so etwa Gene, die an der Stress-Verarbeitung der Herzmuskelzellen mitwirken. Denn der ursprüngliche molekulare Defekt führt irgendwann sekundär zu pathologischen Veränderungen am Herzen.

"Wir gewinnen jetzt erstmals eine Ahnung von den grundlegenden molekularen Abläufen im Rahmen der Entwicklung des Herzens", meint dazu Silke Sperling, "und wir stehen am Beginn eines noch langen Forschungswegs, über den sich dieses komplexe Netzwerk entflechten und in seinen Zusammenhängen verstehen lässt."

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: DNA-Chip Gen Genetik Herzfehler

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

nachricht Die bestmögliche Behandlung bei Hirntumor-Erkrankungen
28.03.2017 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit