Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum das Gehör so leistungsfähig ist

22.06.2001


Ergebnisse von Tübinger Physiologen zu Forschungen am Innenohr in ’Science’

Das menschliche Ohr kann sehr leise Töne und selbst feinste Unterschiede in der Tonhöhe wahrnehmen. Schon länger ist der Hörprozess, die Verarbeitung der über die Luft übertragenen Schallwellen im Ohr, bekannt. Allein durch die mechanischen Eigenschaften des Innenohrs lässt sich die große Hörleistung der Säugetiere jedoch nicht erklären. Forscher hatten bereits herausgefunden, dass beim Hörvorgang auch ein aktiver Verstärkungs-Prozess eine Rolle spielt. Unter der Leitung von Prof. Bernd Fakler haben Dr. Dominik Oliver, Dr. Nikolaj Klöcker, Dr. Jost Ludwig, Dr. Uwe Schulte und Prof. J. Peter Ruppersberg vom Institut für Physiologie der Universität Tübingen zusammen mit Marburger und amerikanischen Kollegen die molekularen Grundlagen dieses Verstärkers im Detail untersucht. Ihre Ergebnisse werden in der heutigen Ausgabe der Fachzeitschrift Science (22. Juni 2001, Vol. 292, No. 5525) veröffentlicht.

Stark vereinfacht gesagt werden Geräusche oder Töne, Luftvibrationen, die auf das Trommelfell treffen, mechanisch über die Gehörknöchelchen im Ohr übertragen. Über das so genannte ’ovale Fenster’ werden sie auf eine wässrige Flüssigkeit in einem Organ weitergeleitet, das in der Form der schraubigen Schale einer Schnecke ähnelt - die Cochlea im Innenohr. Die Bewegung der Flüssigkeit in der Cochlea führt schließlich dazu, dass winzige, haarförmige Sinneszellen abgelenkt werden. Ihre Auslenkung melden sie über Nerven an das Gehirn, wo dann die Hörempfindung ausgelöst wird. Dieser komplizierte Prozess reicht jedoch noch nicht aus, um die große Leistungsfähigkeit des Gehörs zu erklären. Zusätzlich laufen elektrische Prozesse an den Haarsinneszellen in der Cochlea ab: Sie ändern ihre Länge als Antwort auf Änderungen der elektrischen Spannung in ihrer Zellmembran. Dadurch wird der eintreffende Schallreiz verstärkt.

Die Längenänderung, so haben Forscher kürzlich entdeckt, wird von einem elektrisch empfindlichen Motormolekül vermittelt, dem Eiweiß Prestin, das die äußere Hülle der Haarsinneszelle durchspannt. Die Tübinger Physiologen haben nun herausgefunden, was wiederum das Motormolekül Prestin antreibt: negativ geladene Teilchen (Ionen) im Innern der Haarsinneszellen. Denn wenn diese Ionen im Experiment entfernt wurden, konnten die Haarsinneszellen ihre Länge nicht mehr ändern, da sich das Motormolekül Prestin nicht mehr bewegte. Damit ergibt sich ein Modell, in dem die negativ geladenen Ionen als Sensoren wirken, die von der elektrischen Spannung in das Prestinmolekül hineingedrückt werden und so seine Formänderungen bewirken. Die Formänderung des Prestins wiederum steuert die Längenänderung der Haarsinneszellen und ermöglicht so die große Empfindlichkeit des Gehörs.

Die Grundlagenforschung der Tübinger Wissenschaftler soll helfen, die Vorgänge im Innenohr des Menschen besser zu verstehen. Denn Störungen der Verstärkerfunktion der Haarsinneszellen sind eine der Hauptursachen für Schwerhörigkeit.


Nähere Informationen:

Prof. Bernd Fakler
Physiologisches Institut
Gmelinstraße 5
72076 Tübingen
Tel. 0 70 71/2 97 71 73
Fax 0 70 71/8 78 15
E-Mail: bernd.fakler@uni-tuebingen.de

Michael Seifert | idw

Weitere Berichte zu: Cochlea Gehör Haarsinneszelle Innenohr Ion Motormolekül Ohr

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik