Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung eines Magnetkammersystems am Kieler Institut für Immunologie

01.10.2004


Entwicklung eines Magnetkammersystems am Kieler Institut für Immunologie ermöglicht neue Erkenntnisse bei der Signalübertragung in Tumorzellen.


Am Institut für Immunologie des Universitätsklinikums Schleswig-Holstein (UKSH), Campus Kiel (Direktor Prof. Dr. Dietrich Kabelitz) wurde von Prof. Dr. Stefan Schütze, stellvertretender Direktor des Instituts, zusammen mit dem Biophysiker Dr. Vladimir Tchikov ein neuartiges System zur Isolierung von kleinsten subzellulären Organellen entwickelt. Das bereits patentierte Verfahren beruht auf einer spezifischen Markierung von Membranstrukturen mittels kleinster magnetischer Partikel und nachfolgender Isolierung der magnetisierten Zellbestandteile in einer eigens dafür entwickelten Magnetkammer, die über eine besondere Konstruktion zur Verstärkung des Magnetfelds verfügt.

Mit diesem System wurde erstmalig die Bedeutung der Aufnahme von Rezeptoren für das Zytokin "Tumor Nekrose Faktor" (TNF), einem wichtigen Botenstoff des Immunsystems, in Tumorzellen ermöglicht. Bisher war man davon ausgegangen, dass der "programmierte Zelltod", die sogenannte Apoptose, von der Oberfläche der Tumorzellen ausgeht. Prof. Schütze hat zusammen mit den beiden Erstautoren Dr. Schneider-Brachert und Dr. Tchikov sowie weiteren Kollegen aus dem Institut für Immunologie und dem Anatomischen Institut der CAU Kiel dagegen in der angesehenen Fachzeitschrift "Immunity" (Immunity, Band 21, Seite 415-428, September 2004) dargelegt, dass der Zelltod durch sogenannte "Todesvesikel" vermittelt wird.


Während der Aufnahme dieser Vesikel in die Zelle, werden von den TNF-Rezeptoren spezifische Proteine aus dem Zellinneren gebunden, die für das kontrollierte Absterben der Tumorzellen notwendig sind. Durch die Isolierung der TNF-Rezeptoren mit dem konnte der Weg dieser "Todesvesikel" in den Zellen biochemisch verfolgt werden. Damit eröffnen sich neue Wege zum gezielten therapeutischen Eingriff in die Regulation des Ablaufs des Zelltods. Für die Untersuchungen mit dem Magnetkammersystem wurden Fördermittel durch die Deutsche Forschungsgemeinschaft (DFG) bereitgestellt. Zur Weiterentwicklung des Systems wurde Prof. Schütze und der Biotechnik-Firma raytest, Straubenhardt, kürzlich eine zweijährige Förderung durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Fördermaßnahme "BioChancePlus" bewilligt. Die Anwendungsgebiete dieser neuartigen Biotechnologie-Entwicklung erstrecken sich laut Prof. Schütze auf weite Bereiche der Proteomforschung, Zell- und Molekularbiologie, Immunologie und Mikrobiologie.

Ansprechpartner:
Prof. Dr. Stefan Schütze
Institut für Immunologie, UK S-H Campus Kiel
Telefon 0431-5973382
email: schuetze@immunologie.uni-kiel.de

Susanne Schuck | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Berichte zu: Immunologie Magnetkammersystem Tumorzelle Zelltod

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics