Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schrittmacher aus Stammzellen

12.08.2004


Neue Therapie bei Herzrhythmusstörungen? / Forschungs-Stipendium für Wissenschaftler der Medizinischen Universitätsklinik Heidelberg


Biologische Herzschrittmacher aus Stammzellen könnten künftig eine Behandlungsalternative zu elektronischen Schrittmachern bieten. Für ein Forschungsprojekt zur Entwicklung eines biologischen Impulsgebers hat Dr. Dierk Thomas, wissenschaftlicher Mitarbeiter der Abteilung Kardiologie, Angiologie und Pneumologie der Medizinischen Universitätsklinik Heidelberg (Ärztlicher Direktor: Professor Dr. Hugo Katus), von der Deutschen Gesellschaft für Kardiologie das Max-Schaldach-Stipendium 2004 in Höhe von 25.000 Euro erhalten. Die Forschungsarbeiten laufen unter der Leitung von Dr. Christoph Karle.

Herzschrittmacher seit Jahren erfolgreich angewandt / Therapie birgt aber auch Risiken


Der Herzschlag wird durch körpereigene elektrische Impulse erzeugt. Taktgeber ist dabei der Sinusknoten im Herzen, ein Bündel spezialisierter Nervenzellen. Von dort läuft der Impuls über ein Reizleitungssystem durch den Herzmuskel, das Herz zieht sich zusammen. Bei Herzrhythmusstörungen können sowohl der Sinusknoten als auch das Reizleitungssystem gestört sein. Die Folge: Das Herz schlägt zu schnell, zu langsam oder unregelmäßig. Ist der Herzrhythmus zu langsam, kann ein elektronischer Herzschrittmacher als künstlicher Impulsgeber einspringen.

Elektronische Herzschrittmacher werden seit Jahren sicher und erfolgreich angewandt. Sie weisen jedoch auch Nachteile auf: Der chirurgische Eingriff, die Implantation des nahezu handtellergroßen Geräts unter das Schlüsselbein, ist mit einem, wenn auch geringen, Risiko verbunden. So können Blutungen oder Infektionen auftreten. Es kommt auch vor, dass sich durch den Engriff Luft im Raum zwischen Lunge und Rippenfell ansammelt, wodurch Atemprobleme entstehen können. Die Operation muss zudem regelmäßig wiederholt werden, um die erschöpfte Batterie auszutauschen. Der Patient muss in kurzen Abständen einen Spezialisten zur Kontrolle aufsuchen. Außerdem kann der Puls nur begrenzt körperlichen Anstrengungen angepasst werden. Elektrische und magnetische Felder (z.B. bei Magnet-Resonanz-Tomographie, Strahlentherapie, elektronischen Metalldetektoren in Flughäfen, Handys) sowie bestimmte mechanische Belastungen können den Schrittmacher aus dem Takt bringen.

"Diese Risiken sind beherrschbar", erklärt Dr. Dierk Thomas. "Trotzdem versuchen wir, einen biologischen Herzschrittmacher zu entwickeln, der die Therapiemöglichkeiten verbessert. Wir möchten aus Stammzellen Herzmuskelzellen züchten, die wir als biologischen Herzschrittmacher in das kranke Herz einbringen", erklärt Dr. Dierk Thomas das Ziel seines Projekts.

Erbinformation für Ionenkanäle wird in Stammzellen eingebracht

Dazu untersuchen die Heidelberger Forscher zunächst die winzigen Kanäle, die in der Wand der Herzmuskelzellen sitzen. Diese lassen geladene Teilchen, "Ionen", geregelt ein- und ausströmen und regulieren dadurch den elektrischen Herzschlag-Impuls. "Zuerst müssen wir genau verstehen, wie diese Kanäle arbeiten. Dann werden wir die Erbinformation für die Schrittmacher-Kanäle in Stammzellen einbringen, die sich zu Herzmuskelzellen entwickeln." Als Transportsystem für die Kanal-Gene nutzen die Wissenschaftler Viren, die für den Menschen ungefährlich sind, so genannte Adenoviren.

Genetisch veränderte Stammzellen reifen zu Herzschrittmacher-Zellen

Die Forscher sehen zwei Alternativen auf dem Weg zum biologischen Herzschrittmacher: Entweder implantieren sie über einen Herzkatheter die Stammzellen direkt in das kranke Herz. Dort reifen die Zellen zu intakten Herzmuskelzellen und erzeugen den elektrischen Herzschlag-Impuls. Oder die Wissenschaftler bringen die Stammzellen zuerst im Labor in ein künstliches Herzgewebe ein, wo sie sich vermehren und sich zu Herzmuskelzellen entwickeln. "Aus solch einem künstlichen Herzgewebe, dem "engineered heart tissue", können wir die fertigen Herzzellen regelrecht ernten und sie dann in das kranke Herz einbringen", beschreibt Dr. Thomas die Vorteile dieses Systems. Läuft alles nach Plan, rechnen die Wissenschaftler damit, in ca. vier Jahren erste klinische Studien mit einem biologischen Herzschrittmacher durchführen zu können.

Forschungsergebnisse gehen in die Medikamenten-Entwicklung ein

In ihren Forschungsarbeiten untersuchen die Wissenschaftler auch die Möglichkeiten, Herzrhythmusstörungen mit Medikamenten zu behandeln. Bisher gibt es vor allem Wirkstoffe für Patienten mit einem zu schnellen Herzschlag. Es fehlen Medikamente, um einen zu langsamen Herzrhythmus zu behandeln. "Da gibt es einen großen Bedarf. Wenn wir verstehen, wie die Schrittmacher-Kanäle in der Wand von Herzmuskelzellen reguliert werden, können wir mit Medikamenten in diese Mechanismen eingreifen", blickt Dr. Thomas in die Zukunft.

Ansprechpartner:
Dr. Dierk Thomas
Abteilung Kardiologie der Medizinischen Universitätsklinik Heidelberg
E-Mail: Dierk_Thomas@med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.med.uni-heidelberg.de/aktuelles/
http://www.med.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen