Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schwerhörigkeit auf den Grund gehen - InnenOhrLabor im Klinikum Göttingen

15.06.2001

In der Abteilung Hals-Nasen-Ohrenheilkunde (Leiter Professor Dr. Wolfgang Steiner) der Georg-August-Universität Göttingen - Bereich Humanmedizin ist ein InnenOhrLabor eingerichtet worden. Dieses bietet neue Möglichkeiten, die Ursachen für Schwerhörigkeit zu erforschen. "Mit unseren sehr empfindlichen Messmethoden können wir nun im Tiermodell nach Funktionsstörungen in Haarsinneszellen des Innenohres suchen, die für Schwerhörigkeit verantwortlich sind", sagt Dr. Tobias Moser, Leiter des InnenOhrLabors. Die so genannte patch-clamp-Technik ermögliche es, computerunterstützt die Membranströme und die Botenstoff-Freisetzung in einzelnen Haarsinneszellen zu messen, die mit anderen Methoden nicht erfasst werden können. Die Botenstoff-Freisetzung vermittelt die Schall-Information an das Nervensystem. Eine Störung der Haarzellfunktion kann zu Schwerhörigkeit führen. Ein besseres Verständnis der Entstehungsmechanismen angeborener Schwerhörigkeit beim Menschen bildet die Voraussetzung für potenzielle zukünftige Therapieansätze.

Das Ohr ist das am häufigsten beeinträchtigte Sinnesorgan des Menschen. Von 1000 Neugeborenen sind ein bis zwei bereits angeboren schwerhörig. Die Beeinträchtigung der Hörfähigkeit kann trotz neuester unterstützender oder ersetzender Hilfsmittel oft nicht komplett behoben werden, so dass Defizite in der Wahrnehmung bleiben. Die Entstehungsmechanismen sowohl der ererbten als auch der erworbenen Schwerhörigkeit sind in vielen Fällen weitgehend ungeklärt. In den letzten Jahren sind einige für vererbte Schwerhörigkeitsformen des Menschen verantwortliche Gen-Defekte identifiziert worden. Vergleichbare Defekte wurden auch in Genen von Mäusen gefunden, die auf Grund spontaner oder im genetischen Experiment erzeugter Mutation schwerhörig sind. Im InnenOhrLabor wird nun die normale und die gestörte Funktion so genannter Haarsinneszellen im Innenohr untersucht. Die äußeren Haarsinneszellen haben die Funktion, akustische Signale zu verstärken. Die inneren Haarzellen wandeln mechanische in nervliche Signale um. Haarsinneszellen sind extrem empfindlich und bislang nicht ersetzbar. Die Untersuchungen konzentrieren sich zunächst auf Haarsinneszellen von Mäusen mit genetisch bedingter Schwerhörigkeit.

Eine enge Zusammenarbeit des InnenOhrLabors besteht mit Professor Erwin Neher, Direktor der Abteilung Membranbiophysik am Max-Planck-Institut für Biophysikalische Chemie in Göttingen.

Weitere Informationen:


Das Corti’sche Organ einer Maus mit den unterschiedlichen Haarsinneszellen - Foto: Moser/UKG


Universität Göttingen - Bereich Humanmedizin
Abteilung Hals-Nasen-Ohrenheilkunde


Dr. Tobias Moser
Robert-Koch-Str. 40
37075 Göttingen

Tel.: 0551/39-2837
Fax: 0551/339-2809

Rita Wilp | idw

Weitere Berichte zu: Haarsinneszelle Innenohr Schwerhörigkeit

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics