Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularen Mechanismus der Regeneration nach Herzinfarkt entdeckt

01.07.2004


Nach einem Herzinfarkt ist die Pumpfunktion des Herzens eingeschränkt. Gelingt es, die Durchblutung und damit die Sauerstoffversorgung des Herzens wiederherzustellen, dauert es rund drei Monate, bis sich das Herz eines Infarktpatienten erholt und den durch die Durchblutungsstörung aufgetretenen Verlust an Herzkraft partiell wieder ausgeglichen hat. Bei diesem natürlichen Heilungsprozess vergrößern sich die verbliebenen Herzzellen (Hypertrophie). Kurzfristig verbessert dieser Effekt die Herzkraft. Langfristig führt eine Hypertrophie jedoch zur Schwächung des Herzens: die Schlagkraft der Herzzellen ist zwar erhöht, gleichzeitig ist ihre Widerstandsfähigkeit gegenüber weiterer Belastung jedoch vermindert, sie sterben ab. Um die Herzbelastung zu reduzieren, erhalten Patienten daher so genannte Beta-Blocker. Diese haben jedoch eine Reihe von Nebenwirkungen wie zum Beispiel die Verlangsamung der Herzfrequenz.


Wissenschaftler des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch (Forschungsgruppe Dr. Claus Scheidereit) haben in Zusammenarbeit mit Klinikern der Franz-Volhard-Klinik für Herz-Kreislaufkrankheiten der Charité - Universitätsmedizin Berlin/Helios Klinikum Berlin (Forschungsgruppe Dr. Martin Bergmann/Prof. Rainer Dietz) jetzt in Herzmuskelzellen von Ratten einen molekularen Mechanismus entdeckt, der die Regeneration des Herzmuskels nach Mangeldurchblutung steuert. Dr. Amina El Jamali (MDC) und Dr. Bergmann (er ist Kardiologe und zudem Helmholtz-Stipendiat im MDC) identifizierten einen Transkriptionsfaktor, in der Fachsprache CREB genannt, der die Signalkaskade reguliert, die zur Vergrößerung von Herzmuskelzellen nach schwerem Sauerstoffmangel führt. Gelänge es, diesen Faktor zu blockieren, könnte möglicherweise in Zukunft die Hypertrophie der Herzmuskelzellen gezielter als mit der Blockade des beta-Rezeptors verhindert werden, erläutert Dr. Bergmann die Vorstellung der Forscher. Doch noch sind es erst Erkenntnisse, die sie in der Zellkultur gewonnen haben. Es wird viele Jahre dauern, bis die Forscher wissen, ob sie auf dem richtigen Weg sind. Ihre Arbeit hat jetzt das amerikanische Fachblatt der Federation of American Societies for Experimental Biology, FASEB, (Volume 18, Issue 10, July 2004)* veröffentlicht.

*Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro; activation of CREB downstram of GSK3beta

Amina El Jamall,* Christian Freund, Cindy Rechner, Claus Scheidereit*, Rainer Dietz, and Martin Bergmann
Franz-Volhard Clinic, Helios Klinikum Berlin, Charité Campus Buch and *Max Delbrück Center for Molecular Medicine, Berlin, Germany

Barbara Bachtler | idw
Weitere Informationen:
http://www.fasebj.org/cgi/doi/10.1096/fj.03-1054fje
http://www.mdc-berlin.de

Weitere Berichte zu: Herzinfarkt Herzmuskelzelle Hypertrophie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Therapieansatz: Kombination von Neuroroboter und Hirnstimulation aktiviert ungenutzte Nervenbahnen
16.01.2018 | Universitätsklinikum Tübingen

nachricht Europäisches Forschungsteam trickst Ebolavirus aus
16.01.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein „intelligentes Fieberthermometer“ für Mikrochips

16.01.2018 | Informationstechnologie

Diagnostik der Zukunft - Europäisches Projekt zur Erforschung seltener Krankheiten startet

16.01.2018 | Förderungen Preise

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018 | Biowissenschaften Chemie