Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Laserendoskop blickt tief unter die Haut

23.06.2004


Jährlich erkranken in Deutschland rund 100.000 Menschen an Hautkrebs, 3.000 sterben sogar daran. Die Ärzte unterscheiden dabei drei Arten von Hautkrebs: den Stachelzellkrebs (Plattenephitelkarzinom), den Basalzellkrebs (Basaliom) sowie den uns wohl bekanntesten schwarzen Hautkrebs (malignes Melanom). Eine Hauptursache für Hautkrebserkrankungen ist die UV-Strahlung, sowohl durch natürliche Sonnenstrahlen als auch durch Benutzung künstlicher Besonnungsanlagen. Je nach Hauttyp und Intensität der Strahlung können bereits zwischen 5 und 40 Minuten genügen, um Sonnenbrände zu verursachen. Wiederholte Hautschädigungen dieser Art akkumulieren sich und führen letztendlich zu tiefgreifenden Zellschädigungen, die zeitverzögert auch Hautkrebs hervorrufen können.



Die Früherkennung und operative Entnahme der bösartigen Hautveränderungen ist die sicherste Vorgehensweise, um den Krebs zu behandeln und dauerhaft zu beseitigen. Der Dermatologe betrachtet üblicherweise mit einer speziellen Lupe die Hautpartien des Patienten. Bei der Entscheidung, ob eine Hautveränderung bösartig ist, hilft ihm dann vor allem seine Erfahrung.

... mehr zu:
»Hautkrebs »Laser


Um Dermatologen bei der frühen Hautkrebsdiagnose zu unterstützen, hat die Arbeitsgruppe von Prof. Dr. Karsten König des Fraunhofer Instituts für Biomedizinische Technik (IBMT) im saarländischen St. Ingbert in Kooperation mit der Universität des Saarlandes und Dermatologen der Friedrich-Schiller-Universität Jena ein Kombinationsverfahren aus Laser- und Endoskoptechnik entwickelt. Bei dem neuartigen Verfahren wird zunächst die Haut mit ultrakurzen Laserimpulsen (Femtosekundenimpulse) gerastert. Durch die intensiven Laserimpulse mittels Infrarot-Strahlen im nahen Infrarot-Spektralbereich werden die einzelnen Gewebebestandteile zum Eigenleuchten (schwache Autofluoreszenz) angeregt. Licht im nahen Infrarot-Spektral­bereich hat den Vorteil, besonders gut in die Haut einzugehen und dennoch bioverträglich zu sein. Autofluoreszenz bedeutet, dass jedes Molekül der Haut, je nach Art und Beschaffenheit, eine eigene Farbe an den Scanner weitergibt und somit bestimmt und unterschieden werden kann. Auch das Pigment Melanin, welches der Haut die bräunliche Farbe verleiht und von der Oberhaut (Epidermis) gebildet wird, um UV-Licht zu absorbieren, leuchtet bei der Bestrahlung auf und kann dadurch im Gewebe nachgewiesen werden. Sehr empfindliche Photonen-Detektoren dienen dazu, das schwache Eigenleuchten der einzelnen Gewebebestandteile aufzufangen und als Bild wieder zu geben. Zelle für Zelle kann durch den Laser gescannt und sichtbar gemacht werden. Durch dieses Diagnoseverfahren bietet sich Dermatologen eine weitere Möglichkeit zur Unterscheidung kranker von gesunden Zellen.

Mit dem Laser können allerdings nur die oberen Hautschichten untersucht werden. Um auch einige Millimeter tiefer unter die Haut blicken zu können, ergänzt ein von Prof. König entwickeltes Mini-Endoskop mit einem Außendurchmesser von nur einem Millimeter den Laser. Das stäbchenförmige optische System wird durch einen kleinen Schnitt in die Haut eingeführt und mit dem Laser gekoppelt. Damit gelingt es dann auch, die tiefer unter der Haut sitzenden Gewebebestandteile zum Eigenleuchten zu bringen und zu bestimmen.

Das Projekt, das zu den Gewinnern des Innovationswettbewerbs 2003 des Bundesministeriums für Bildung und Forschung zur Förderung der Medizintechnik gehört, ist auf zwei Jahre angelegt. In dieser Zeit erwarten die Forscher, mit Hilfe ihres Verfahrens Aussagen zur Gestalt, dem Teilungsverhalten und dem Atmungsstoffwechsel einzelner Tumorzellen in den verschiedenen Schichten der Haut treffen zu können.

Ein weiteres Ziel der Wissenschaftler ist es, das Verfahren zur Therapiekontrolle einzusetzen. Hierfür sollen ein erstes Labormuster für den Einsatz am Patienten entwickelt und erste klinische Studien durchgeführt werden.

Kontakt:

Prof. Dr. Karsten König
Leiter AG Mikrosystemtechnik/Lasermedizin
Fraunhofer Institut für Biomedizinische Technik
66386 St. Ingbert
Tel.: (06894) 980-151, Fax: -400
E-Mail: karsten.koenig@ibmt.fraunhofer.de

Roland Rolles | Innovationseinblicke Saarland
Weitere Informationen:
http://www.ibmt.fraunhofer.de

Weitere Berichte zu: Hautkrebs Laser

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten