Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrafeine Teilchen aus der Luft schädigen Herz und Gefäße

13.05.2004


Winzige Staubpartikel können das Herz aus dem Takt bringen. Die Mechanismen, mit denen vor allem die ultrafeinen Teilchen Herz und Gefäße schädigen, haben Dr. Holger Schulz vom Institut für Inhalationsbiologie und Dr. Annette Peters vom Institut für Epidemiologie, GSF-Forschungszentrum für Umwelt und Gesundheit in Neuherberg, untersucht.

Die Wissenschaftler entdeckten drei Möglichkeiten, wie die Kohlenstoffpartikel, die vor allem aus Abgasen von Autos und Fabriken stammen, den Organismus schädigen können.

... mehr zu:
»Arterie »Fibrinogen »Gefäß »Partikel

In der Blutbahn kann der Schwebstaub Blutplättchen aktivieren, die die Gerinnungsfähigkeit des Blutes erhöhen. Das Blut wird dadurch zähflüssiger und die Wahrscheinlichkeit, dass sich Gerinnsel bilden, steigt. Außerdem bewirken die Teilchen, dass Arterien nicht mehr so schnell ihren Durchmesser vergrößern können. Das Herz wird in stressigen Situationen nicht ausreichend durchblutet. Die Folgen sind Herzrhythmusstörungen, die zum Infarkt führen können.

Die Schadstoffe, beeinflussen auch die autonome Kontrolle, die den Herzschlag steuert. Der Puls ist beschleunigt und das Herz schlägt zu regelmäßig unter Einfluss des Staubs. Gleichzeitig kann sich der Muskel nicht mehr so stark zusammenziehen, da der Kalziumhaushalt der Zelle gestört ist. Die veränderte Ionenkonzentration kann überdies zu Kammerflimmern und Herzstillstand führen. Auch über Rezeptoren auf der Oberfläche der Lungenbläschen können die Partikel das autonome Nervensystem beeinflussen und den Sympathikus, der den Körper in Alarmbereitschaft versetzt, aktivieren. Bei vorbelasteten Personen kann dies dazu führen, dass das Herz unregelmäßig schlägt und nicht ausreichend durchblutet ist.

Als dritte Möglichkeit können die Partikel das Lungengewebe entzünden, wodurch Botenstoffe freigesetzt werden. Daraufhin gerinnt das Blut schneller und der Körper mobilisiert seine Abwehrkräfte. Als Folge wird mehr Fibrinogen freigesetzt, das Blut wird zähflüssiger und die Arterien verkalken schneller. Reißt so eine arteriosklerotische Stelle, sind die Blutgerinnsel, die sich darauf bilden, umso größer, je mehr Fibrinogen vorhanden ist. Die Gefahr eines Herzinfarkts ist dadurch stark erhöht.

Vor allem ihre geringe Größe macht die weniger als hundert Nanometer kleinen ultrafeinen Partikel so gefährlich: Nasenschleimhaut, Membranen und Makrophagen sind eher darauf spezialisiert, größere Teilchen abzufangen.

Gertrud Aßmann | idw
Weitere Informationen:
http://www.gsf.de/Aktuelles/Presse/partikel2.phtml

Weitere Berichte zu: Arterie Fibrinogen Gefäß Partikel

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Gefäßregeneration: Wie sich Wunden schließen
12.12.2017 | Medizinische Hochschule Hannover

nachricht Mit 3D-Zellkulturen gegen Krebsresistenzen
11.12.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie