Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrafeine Teilchen aus der Luft schädigen Herz und Gefäße

13.05.2004


Winzige Staubpartikel können das Herz aus dem Takt bringen. Die Mechanismen, mit denen vor allem die ultrafeinen Teilchen Herz und Gefäße schädigen, haben Dr. Holger Schulz vom Institut für Inhalationsbiologie und Dr. Annette Peters vom Institut für Epidemiologie, GSF-Forschungszentrum für Umwelt und Gesundheit in Neuherberg, untersucht.

Die Wissenschaftler entdeckten drei Möglichkeiten, wie die Kohlenstoffpartikel, die vor allem aus Abgasen von Autos und Fabriken stammen, den Organismus schädigen können.

... mehr zu:
»Arterie »Fibrinogen »Gefäß »Partikel

In der Blutbahn kann der Schwebstaub Blutplättchen aktivieren, die die Gerinnungsfähigkeit des Blutes erhöhen. Das Blut wird dadurch zähflüssiger und die Wahrscheinlichkeit, dass sich Gerinnsel bilden, steigt. Außerdem bewirken die Teilchen, dass Arterien nicht mehr so schnell ihren Durchmesser vergrößern können. Das Herz wird in stressigen Situationen nicht ausreichend durchblutet. Die Folgen sind Herzrhythmusstörungen, die zum Infarkt führen können.

Die Schadstoffe, beeinflussen auch die autonome Kontrolle, die den Herzschlag steuert. Der Puls ist beschleunigt und das Herz schlägt zu regelmäßig unter Einfluss des Staubs. Gleichzeitig kann sich der Muskel nicht mehr so stark zusammenziehen, da der Kalziumhaushalt der Zelle gestört ist. Die veränderte Ionenkonzentration kann überdies zu Kammerflimmern und Herzstillstand führen. Auch über Rezeptoren auf der Oberfläche der Lungenbläschen können die Partikel das autonome Nervensystem beeinflussen und den Sympathikus, der den Körper in Alarmbereitschaft versetzt, aktivieren. Bei vorbelasteten Personen kann dies dazu führen, dass das Herz unregelmäßig schlägt und nicht ausreichend durchblutet ist.

Als dritte Möglichkeit können die Partikel das Lungengewebe entzünden, wodurch Botenstoffe freigesetzt werden. Daraufhin gerinnt das Blut schneller und der Körper mobilisiert seine Abwehrkräfte. Als Folge wird mehr Fibrinogen freigesetzt, das Blut wird zähflüssiger und die Arterien verkalken schneller. Reißt so eine arteriosklerotische Stelle, sind die Blutgerinnsel, die sich darauf bilden, umso größer, je mehr Fibrinogen vorhanden ist. Die Gefahr eines Herzinfarkts ist dadurch stark erhöht.

Vor allem ihre geringe Größe macht die weniger als hundert Nanometer kleinen ultrafeinen Partikel so gefährlich: Nasenschleimhaut, Membranen und Makrophagen sind eher darauf spezialisiert, größere Teilchen abzufangen.

Gertrud Aßmann | idw
Weitere Informationen:
http://www.gsf.de/Aktuelles/Presse/partikel2.phtml

Weitere Berichte zu: Arterie Fibrinogen Gefäß Partikel

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Impfstoffe zuverlässig inaktivieren mit Elektronenstrahlen

23.03.2017 | Biowissenschaften Chemie

Darmkrebs: Wenn die Wachstumsbremse fehlt

23.03.2017 | Biowissenschaften Chemie

Riesensalamander, Geckos und Olme – Verschwundene Artenvielfalt in Sibirien

23.03.2017 | Biowissenschaften Chemie