Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Apparativer Tastbefund mit Magnetresonanz-Elastographie

28.05.2001


UKBF entwickelt erweiterte Diagnostik von Krankheitsprozessen in Geweben


In der Abteilung für Medizinische Informatik des Fachbereichs Humanmedizin der FU Berlin/Universitätsklinikum Benjamin Franklin (UKBF) wird seit knapp zwei Jahren eine Methode weiterentwickelt, um erstmals die Bestimmung der Elastizität von tiefer im Körper gelegenen Strukturen mit Hilfe der Kernspintomographie (Magnetresonanz-Tomographie, MRT) zu ermöglichen. Laut Projektleiter Dr. Jürgen Braun liegen die Anwendungsmöglichkeiten vor allem in der Diagnose und Charakterisierung von Hirn- und Brusttumoren sowie von entzündlichen und nekrotischen Prozessen. Weitere Anwendungsmöglichkeiten eröffnen sich für Untersuchungen von Muskeln und Prostata. Längerfristig könnten so die üblichen Gewebe-Entnahmen (Biopsien) entfallen.

Eine der ältesten Methoden ärztlicher Diagnostik ist die Palpation, das Ertasten von Verhärtungen oder Erweichungen von Gewebe. Veränderungen der Gewebe-Elastizität deuten auf krankhafte Prozesse hin. Manuelle Tastbefunde sind auch heute noch ein wichtiger Teil der ärztlichen Praxis. Doch es bestehen zwei entscheidende Beschränkungen:

Der Arzt kann nur feststellen, d a s s etwas "nicht in Ordnung ist", meist aber nicht genau, w a s es ist (zum Beispiel ein gutartiger oder ein bösartiger Tumor).
Tiefliegende oder durch knöcherne Strukturen abgeschirmte Gewebe, wie zum Beispiel krankhafte Veränderungen im Gehirn, können manuell nicht erfasst werden.
Der klassische, manuelle Tastbefund wird daher seit längerem durch technische Verfahren ergänzt, zu denen Ultraschall (Sonographie) und die MRT gehören.
Die Sonographie liefert zweidimensionale Bilder mit relativ schwacher Ausleuchtung, schwachem Bildkontrast und beschränkter räumlicher Auflösung. Immerhin konnten kürzlich erste Ergebnisse beim Aufspüren von Brustkrebs mit der "Ultraschall-Elastographie" erzielt werden. Dagegen bietet die Kernspintomographie die Möglichkeit, auch tiefere Schichten in beliebiger Raumrichtung abzubilden. Doch die biomechanischen Eigenschaften von Geweben können damit bislang nicht sichtbar gemacht werden.
Man müsste die MRT "nur noch" mit den Vorteilen der Palpation verknüpfen, also ein "Apparatives Abtasten" entwickeln. Genau darum - also um die Darstellung der Elastizität - geht es bei dem UKBF-Projekt.

Bei der "Dynamischen Magnetresonanz-Elastographie" (MRE) versetzt Jürgen Braun mit seiner Arbeitsgruppe Gewebe in Schwingungen. Dazu werden außen am Körper geeignete mechanische oder piezoelektrische Anregungseinheiten angesetzt. Diese "Stempel" übertragen mechanische Schwingungen mit einer Frequenz zwischen 100-300 Hertz auf das Gewebe. Die Auslenkungen betragen dabei lediglich einige hundertstel Millimeter. Zur Aufnahme wird ein zeitlich veränderliches Magnetfeld mit der mechanischen Schwingungsübertragung synchronisiert. Die Anregung des Gewebes dauert einige Sekunden bei einer Gesamtaufnahmedauer eines MRT-Bildes von 20 Sekunden. Das so aufgenommene Bild gibt die Elastizitätsunterschiede und damit mögliche krankhafte Veränderungen im untersuchten Gewebe wieder.

In "Phantomstudien" konnte gezeigt werden, dass die Magnetresonanz-Elastographie funktioniert. Dazu wurden Gele benutzt, deren biomechanische Eigenschaften denen von Gewebe vergleichbar sind. Zudem wurden wichtige theoretische Grundlagen und eine physikalische Modellierung der MRE entwickelt, mit deren Hilfe alle Auswertungen der Experimente sowie der Simulationen künftiger Untersuchungen vorgenommen werden können.
In Kürze beginnen nun Untersuchungen am "lebenden Objekt". Dr. Braun schätzt, dass die Methode in ein bis zwei Jahren an Patienten angewendet werden kann.
Bis dahin werden unter anderem Maßeinheiten (Elastizitätsskalen) für unterschiedliche Gewebetypen erstellt, an denen sich der Arzt orientieren kann (ähnlich wie bei Laborwerten). In Zukunft - so die Hoffnung der UKBF-Forscher - könnte der Arzt somit an Hand des mit der dynamischen MRE aufgenommenen Bildmaterials beispielsweise schnell und zuverlässig zwischen gut- und bösartigen Gewebeveränderungen unterscheiden - und dies mit einer gesundheitlich unbedenklichen, nichtinvasiven Technik.

Ansprechpartner:
Dr. Jürgen Braun
Fachbereich Humanmedizin der FU / UKBF
Institut für Medizinische Informatik, Biometrie und Epidemiologie
Abteilung Medizinische Informatik
Hindenburgdamm 30, 12200 Berlin
Tel.: (030) 8445-4506,-4510
E-Mail: braun@medizin.fu-berlin.de

Dipl.Pol. Justin Westhoff, UKBF- | idw
Weitere Informationen:
http://www.medizin.fu-berlin.de/medinf/
http://www.mwm-vermittlung.de/

Weitere Berichte zu: Gewebe MRE MRT Magnetresonanz-Elastographie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Methode der Eisenverabreichung
26.04.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Bestrahlung bei Hirntumoren? Eine neue, verlässlichere Einteilung erleichtert die Entscheidung
26.04.2017 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie