Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Apparativer Tastbefund mit Magnetresonanz-Elastographie

28.05.2001


UKBF entwickelt erweiterte Diagnostik von Krankheitsprozessen in Geweben


In der Abteilung für Medizinische Informatik des Fachbereichs Humanmedizin der FU Berlin/Universitätsklinikum Benjamin Franklin (UKBF) wird seit knapp zwei Jahren eine Methode weiterentwickelt, um erstmals die Bestimmung der Elastizität von tiefer im Körper gelegenen Strukturen mit Hilfe der Kernspintomographie (Magnetresonanz-Tomographie, MRT) zu ermöglichen. Laut Projektleiter Dr. Jürgen Braun liegen die Anwendungsmöglichkeiten vor allem in der Diagnose und Charakterisierung von Hirn- und Brusttumoren sowie von entzündlichen und nekrotischen Prozessen. Weitere Anwendungsmöglichkeiten eröffnen sich für Untersuchungen von Muskeln und Prostata. Längerfristig könnten so die üblichen Gewebe-Entnahmen (Biopsien) entfallen.

Eine der ältesten Methoden ärztlicher Diagnostik ist die Palpation, das Ertasten von Verhärtungen oder Erweichungen von Gewebe. Veränderungen der Gewebe-Elastizität deuten auf krankhafte Prozesse hin. Manuelle Tastbefunde sind auch heute noch ein wichtiger Teil der ärztlichen Praxis. Doch es bestehen zwei entscheidende Beschränkungen:

Der Arzt kann nur feststellen, d a s s etwas "nicht in Ordnung ist", meist aber nicht genau, w a s es ist (zum Beispiel ein gutartiger oder ein bösartiger Tumor).
Tiefliegende oder durch knöcherne Strukturen abgeschirmte Gewebe, wie zum Beispiel krankhafte Veränderungen im Gehirn, können manuell nicht erfasst werden.
Der klassische, manuelle Tastbefund wird daher seit längerem durch technische Verfahren ergänzt, zu denen Ultraschall (Sonographie) und die MRT gehören.
Die Sonographie liefert zweidimensionale Bilder mit relativ schwacher Ausleuchtung, schwachem Bildkontrast und beschränkter räumlicher Auflösung. Immerhin konnten kürzlich erste Ergebnisse beim Aufspüren von Brustkrebs mit der "Ultraschall-Elastographie" erzielt werden. Dagegen bietet die Kernspintomographie die Möglichkeit, auch tiefere Schichten in beliebiger Raumrichtung abzubilden. Doch die biomechanischen Eigenschaften von Geweben können damit bislang nicht sichtbar gemacht werden.
Man müsste die MRT "nur noch" mit den Vorteilen der Palpation verknüpfen, also ein "Apparatives Abtasten" entwickeln. Genau darum - also um die Darstellung der Elastizität - geht es bei dem UKBF-Projekt.

Bei der "Dynamischen Magnetresonanz-Elastographie" (MRE) versetzt Jürgen Braun mit seiner Arbeitsgruppe Gewebe in Schwingungen. Dazu werden außen am Körper geeignete mechanische oder piezoelektrische Anregungseinheiten angesetzt. Diese "Stempel" übertragen mechanische Schwingungen mit einer Frequenz zwischen 100-300 Hertz auf das Gewebe. Die Auslenkungen betragen dabei lediglich einige hundertstel Millimeter. Zur Aufnahme wird ein zeitlich veränderliches Magnetfeld mit der mechanischen Schwingungsübertragung synchronisiert. Die Anregung des Gewebes dauert einige Sekunden bei einer Gesamtaufnahmedauer eines MRT-Bildes von 20 Sekunden. Das so aufgenommene Bild gibt die Elastizitätsunterschiede und damit mögliche krankhafte Veränderungen im untersuchten Gewebe wieder.

In "Phantomstudien" konnte gezeigt werden, dass die Magnetresonanz-Elastographie funktioniert. Dazu wurden Gele benutzt, deren biomechanische Eigenschaften denen von Gewebe vergleichbar sind. Zudem wurden wichtige theoretische Grundlagen und eine physikalische Modellierung der MRE entwickelt, mit deren Hilfe alle Auswertungen der Experimente sowie der Simulationen künftiger Untersuchungen vorgenommen werden können.
In Kürze beginnen nun Untersuchungen am "lebenden Objekt". Dr. Braun schätzt, dass die Methode in ein bis zwei Jahren an Patienten angewendet werden kann.
Bis dahin werden unter anderem Maßeinheiten (Elastizitätsskalen) für unterschiedliche Gewebetypen erstellt, an denen sich der Arzt orientieren kann (ähnlich wie bei Laborwerten). In Zukunft - so die Hoffnung der UKBF-Forscher - könnte der Arzt somit an Hand des mit der dynamischen MRE aufgenommenen Bildmaterials beispielsweise schnell und zuverlässig zwischen gut- und bösartigen Gewebeveränderungen unterscheiden - und dies mit einer gesundheitlich unbedenklichen, nichtinvasiven Technik.

Ansprechpartner:
Dr. Jürgen Braun
Fachbereich Humanmedizin der FU / UKBF
Institut für Medizinische Informatik, Biometrie und Epidemiologie
Abteilung Medizinische Informatik
Hindenburgdamm 30, 12200 Berlin
Tel.: (030) 8445-4506,-4510
E-Mail: braun@medizin.fu-berlin.de

Dipl.Pol. Justin Westhoff, UKBF- | idw
Weitere Informationen:
http://www.medizin.fu-berlin.de/medinf/
http://www.mwm-vermittlung.de/

Weitere Berichte zu: Gewebe MRE MRT Magnetresonanz-Elastographie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics