Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumore genau orten und damit früher behandeln: "Falkenauge" verbessert Krebsdiagnostik

10.04.2001


... mehr zu:
»Metastase
Tumore oder Metastasen verraten sich oft bereits im Szintigramm **, wenn bei einer konventionellen Computertomographie * noch keine morphologischen Veränderungen sichtbar sind. Das liegt daran, dass ein
Tumor, bevor er durch morphologische Veränderungen des Gewebes im Röntgenbild sichtbar wird, bereits an seinen erhöhten Stoffwechselaktivitäten identifiziert werden kann. Die gemessenen Stoffwechselaktivität einem Organ oder Bereich zuzuordnen, ist ohne Computertomographie (Röntgenaufnahme) jedoch oft schwierig, die Behandlung verzögert sich.

In der Tübinger Nuklearmedizin (Universitätsklinikum Tübingen ist seit Ende letzten Jahres eines der wenigen Geräte weltweit in Erprobung, bei dem die Vorteile eines Computertomogramms (Röntgenaufnahmen zum Sichtbarmachen morphologischer Strukturen) mit den Vorteilen eines Szintigramms (Sichtbarmachen von Stoffwechselaktivitäten) vereint worden sind. Dafür werden beide Messmethoden in einem Gerät kombiniert, der Computer liefert dann die aus beiden Methoden vereinigten Bilder.

Das Gerät entfaltet in der Praxis seine volle Wirkung, wenn z.B. auf dem Szintigramm eine Stoffwechselaktivität erkennbar ist, die auf einen Tumor oder eine Metastase hinweist, der Chirurg aber wegen der komplizierten anatomischen Verhältnisse z.B. im Kopf, Hals und Brustbereich, nicht operiert, da man den - oft winzigen - Tumor nicht genau orten kann. Früher musste hier oft zugewartet werden, bis sich auch auf den dreidimensionalen Röntgenbildern eine Veränderung zeigte und der Operateur eine genaue Ortsbeschreibung hatte. Der Vorteil der Früherkennung von Metastasen und Tumoren wurde damit teilweise verschenkt.

Durch die Überlagerung der beiden Meßmethoden ist es inzwischen möglich, tumorverdächtige stoffwechselaktive Bereiche so genau zu orten, dass Diagnose und Behandlung frühzeitig eingeleitet werden kann.
Zum Einsatz kommt das neue, "Falken-Auge" genannte Gerät für rund 1,3 Mio Mark bei Erkrankungen im Hals- und Brustbereich (z.B. Schilddrüse), bei Bronchialkarzinomen, bösartigen Knochenveränderungen oder hormonabhängigen Tumoren etc.
Die Tübinger Wissenschaftler, die letztes Jahr eines der ersten, in Haifa (Israel) entwickelten Geräte der Firma General Electrics zur Erprobung erhielten, können nun erste Ergebnisse vorweisen. Zahlreiche Wissenschaftler aus dem In- und Ausland haben inzwischen die Gelegenheit genutzt, sich die in enger Zusammenarbeit mit der Entwicklungsfirma erprobten Untersuchungsmethoden des "Hawk-Eye" vorführen zu lassen.

Ansprechpartner für nähere Informationen

Universitätsklinikum Tübingen
Radiologische Klinik, Abteilung Nuklearmedizin
Ärztlicher Direktor Prof. Dr. Roland Bares, Tel. 0 70 71 / 29-8 21 79 (ab 17.4. wieder erreichbar)
Fax 0 70 71 / 29-58 69, E-Mail: bares@uni-tuebingen.de

* Computertomographie
bildgebendes röntgensdiagnostisches Verfahren, bei dem der menschliche Körper Schicht für Schicht durchstrahlt wird. Liefert strukturierte, dreidimensionale Röntgenaufnahmen. Es ermöglicht die Darstellung minimaler Dichteunterschiede, z.B. Gewebeveränderungen, Tumoren.

** Szintigraphie
bildgebendes nuklearmedizinisches Verfahren bei dem durch Anwendung radioaktiver Medikamente spezifische Körperfunktionen (z.B. Stoffwechsel) sichtbar gemacht werden.

Dr. Ellen Katz | idw

Weitere Berichte zu: Metastase

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics