Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die motorische Seite des Räumlichen Sehens

11.04.2001


... mehr zu:
»Augenbewegung »Netzhaut
Um Stereosehen zu ermöglichen, muss das Gehirn zusammengehörende Bildelemente auf den Netzhäuten der beiden Augen finden und anschließend aus ihrer relativen Lage die räumliche Tiefe des zugehörenden Objektes
bestimmen. Solange die Augen sich dabei nicht bewegen, ist es aus geometrischen Gründen nicht nötig, die ganze Netzhaut nach zusammengehörenden Elementen abzusuchen - es genügt die Suche entlang sogenannter epipolarer Linien.

Für jede Stelle in der Netzhaut des einen Auges gibt es eine definierte epipolare Linie im anderen Auge. Da die Suche nach zusammengehörenden Bildelementen in komplizierten Umgebungen (oder beim Betrachten sogenannter Random-Dot-Stereogramme) sehr aufwendig werden kann, ist die Vereinfachung durch den Übergang von einer zweidimensionalen Suche über die ganze Netzhaut zu einer eindimensionalen entlang einer Linie oder eines schmalen Streifens beträchtlich. Die Standardmodelle des Stereosehens nahmen daher an, dass das Gehirn diese Vereinfachung kennt und nutzt.
Tatsächlich aber ändert sich die Lage der epipolaren Linien auf der Netzhaut, wenn die Augen sich bewegen. Das heißt, derselbe Lichtfleck auf der linken Netzhaut erfordert eine Suche entlang verschiedener epipolarer Linien auf der rechten, abhängig von der Augenposition.

Das Gehirn hat nun zwei grundsätzliche Möglichkeiten: entweder es berechnet aus der jeweiligen Augenposition die Lage der epipolaren Linien und benutzt die sich daraus ergebende Vereinfachung der Suche - oder es sucht in den zweidimensionalen retinalen Zonen, durch die die epipolaren Linien wandern, wenn sich die Augen bewegen.

Die beteiligten Wissenschaftler haben Random-Dot-Stereogramme entwickelt, mit denen sie zeigen können, dass das Gehirn der zweiten Strategie folgt. Der Teil des visuellen Systems, der gleichartige Bildelemente findet und einander zuordnet, sucht nicht entlang der epipolaren Linien. Es kann dort nicht suchen, weil er nicht weiß, wo auf der Netzhaut sie sich befinden. Die Suche muss daher mindestens jene retinale Zone berücksichtigen, in der die epipolaren Linien für verschiedene Augenposition liegen können.

Die Größe dieser retinalen Zonen hängt vom genauen Muster der Augenbewegungen ab: Während die horizontale und vertikale Blickrichtung vom fixierten Ziel vorgegeben werden, können die Augen zusätzlich um die Blicklinie rotieren. Im 19. Jahrhundert bereits hat man herausgefunden, dass diese Rotation um die Blicklinie, die sogenannte Torsion, ebenfalls vom Ziel vorgegeben wird. Unerwarteterweise nehmen die Augen des Menschen allerdings unterschiedliche Torsionsstellungen ein, abhängig davon, ob das betrachtete Objekt weit entfernt oder nahe ist. Während das Muster der Torsionswinkel für entfernte Objekte - Listings Gesetz - recht gut verstanden ist und zahlreiche Vorteile beschrieben wurden, die mit ihm verbunden sind, gab es bislang keinen überzeugenden Grund, warum die Augen sich gegenüber nahen Zielen anders verhalten sollten - zumal die Argumente für Listings Gesetz auch hier gelten.

Die Simulationen haben gezeigt, dass die Abweichung von Listings Gesetz, die Menschen gegenüber nahen Zielen zeigen, die Suchzonen auf der Retina verkleinern. Das Oculo-motorische System, das die Augenbewegungen steuert, weicht vom vorteilhaften Listingschen Gesetz ab, um das Stereosehen zu vereinfachen.

Es konnte gezeigt werden, dass das senso-motorische System, das die Augen steuert, um Stereosehen zu ermöglichen, nicht vollständig verstanden werden kann ohne Blick auf die Interaktion der sensorischen und motorischen Teilsysteme. Lässt man bei der Untersuchung des Stereosehens die Augenbewegungen unberücksichtigt, unterschätzt man die Komplexität der Suche nach zusammengehörenden Bildelementen. Vernachlässigt man die Anforderungen der sensorischen Seite, erscheinen die Muster der Augenbewegungen unverständlich und sogar kontraproduktiv, weil sie von einem gut verstandenen Optimalmuster (Listings Gesetz) abweichen.

Es erscheint sehr wahrscheinlich, dass die hier exemplarisch gezeigte Bedeutung senso-motorischer Interaktion ein generelles Prinzip beleuchtet und dass die Untersuchung des Zusammenwirkens der Wahrnehmung mit der Ausführung zu besserem Verständnis zahlreicher Gehirnsysteme führen kann. Von klinischem Interesse sind die Ergebnisse möglicherweise für die Rehabilitation von Patienten mit Strabismus (Schielen).

Ansprechpartner für nähere Informationen

Universitätsklinikum Tübingen
Neurologische Universitätsklinik
Prof. Dr. Michael Fetter
Tel. 0 72 02 / 61 36 06
E-Mail: Michael.Fetter@kkl.srh.de


** "The motor side of depth vision"
by Kai Schreiber et al. (Depts of Physiology and Medicine, Univ. of Toronto AND Canadian Insts. for Health Rsch, York Univ, Toronto), Michael Fetter (Dept of Neurology, University Hospital, Tubingen); Nature, 12 April 2001

Dr. Ellen Katz | idw

Weitere Berichte zu: Augenbewegung Netzhaut

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten