Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungszentrum Jülich liefert Schlüsseltechnologie für Herzpumpen

10.03.2004

Weltweit sind rund 15 Millionen Menschen chronisch herzkrank. Vielen bleibt zum Überleben nur die Hoffnung auf eine Transplantation. Rund 100 000 Spenderherzen werden jährlich benötigt etwa 2 500 stehen zur Verfügung. Die lebensrettende Alternative ist eine implantierbare Herzpumpe, welche die blutfördernde Funktion des Herzens übernimmt. Wissenschaftler des Forschungszentrums Jülich haben ein einzigartiges Magnetlager für diese Herzpumpen entwickelt. Mit der Jülicher Schlüsseltechnologie arbeiten Blutpumpen berührungslos und nahezu verschleißfrei, sind leichter, transportieren das Blut schonender und vermindern das Risiko der Thrombenbildung im Inneren der Pumpe. Jetzt erhielt das Forschungszentrum europäische und amerikanische Patente für diese in Herzpumpen eingesetzten Magnetlager.

Die Jülicher Technologie wird in Herzunterstützungspumpen eingesetzt, die von einem deutschen Unternehmen entwickelt wurden. Mit diesem hat das Forschungszentrum einen Lizenzvertrag geschlossen, der die Umsatzbeteiligung an dem neuartigen Kunstherztyp festlegt.

Die Blutpumpe wird neben das Herz in den Körper des Patienten implantiert und fördert das Blut von der linken Herzkammer direkt in die Aorta. Damit übernimmt sie die Pumpfunktion des Herzens und rettet den Patienten aus einer lebensbedrohlichen Situation, die andernfalls eine sofortige Herztransplantation erfordern würde.

Durch die einzigartige Magnetlagertechnik der Jülicher Wissenschaftler hebt sich die neuartige Unterstützungspumpe von anderen Kunstherzgenerationen ab. Der Rotor im Innern der Pumpe lagert berührungslos und somit verschleißfrei zwischen zwei Permanentmagneten und sorgt mit bis zu 12 000 Umdrehungen pro Minute für die erforderliche Pumpleistung.

Aufgrund des Jülicher Magnetlagers ist der Pumprotor so leicht, dass er auch mit pulsierender statt mit gleichbleibender Drehzahl betrieben werden könnte. Dadurch würde der Herzpuls des Menschen nachgebildet. Da der Rotor keinen mechanischen Kontakt zu Gehäuseteilen der Pumpe hat, entsteht keine Reibungswärme, und das Blut wird schonend transportiert. Zudem kann der Blutstrom an jeder Stelle ungehindert fließen das Risiko der Thrombenbildung im Innern der Pumpe ist damit erheblich reduziert. Die Herzunterstützungspumpe mit Jülicher Magnetlager ist weltweit die erste und bisher einzige implantierbare Blutpumpe mit magnetisch gelagertem Rotor, die für den klinischen Einsatz zugelassen wurde. In verschiedenen Herzzentren Europas und Chinas wurden bislang schon mehr als 100 Pumpen dieser Bauart implantiert. Mehreren Patienten konnte die Pumpe sogar wieder entnommen werden, nachdem sich ihr eigenes Herz erholt hatte.

Unter der Leitung von Dr. Johan Fremerey entwickelt das Magnetlagerlabor der Zentralabteilung Technologie (ZAT) des Forschungszentrums seit über 25 Jahren berührungslose Lager und Antriebssysteme. Wo Schmiermittel nicht zum Einsatz kommen können beispielsweise bei hohen Drehzahlen, empfindlichen Messinstrumenten oder in Vakuumanlagen sind Magnetlager die Lösung. Die Antriebswellen werden berührungslos von Permanentmagneten gehalten, wie sie viele von Magnettafeln kennen. "Um zu verhindern, das die Rotorwelle an den Magneten klebt, muss die Zugkraft der Magnete in jedem Moment exakt austariert werden", erklärt Johan Fremerey die technische Schwierigkeit. "Dies wird durch elektrische Spulen erreicht, die mithilfe von Sensoren gesteuert werden und jede Abweichung des Rotors aus seiner berührungslosen Lage unterbinden."

"Da wir keine unter Dauerstrom stehenden Elektromagnete benutzen, ist der Energieverbrauch unserer Magnetlager sehr gering", zählt der Physiker einen weiteren Vorteil auf. "Zudem werden nur zwei Magnetpaare benötigt." Dadurch ist die neuartige Herzunterstützungspumpe bei einem Durchmesser von 30 Millimeter nur 200 Gramm "schwer" und kann auch bei kleinen Patienten eingesetzt werden.

Das Jülicher Know-how aus dem Magnetlagerlabor wird von der Industrie erfolgreich vermarktet. Allein mit Vakuumpumpen auf der Basis der Jülicher Magnetlagertechnik hat die Industrie seit Beginn der neunziger Jahre Umsätze in Höhe von mehreren hundert Millionen Euro erzielt. Eine US-Studie aus dem Jahr 2001 prognostiziert für Herzunterstützungssysteme langfristig ein Potenzial von jährlich 6 Milliarden USDollar.

Zum Forschungszentrum Jülich: Das Forschungszentrum Jülich ist das größte interdisziplinäre Forschungszentrum in Europa mit einem Jahresetat von 360 Mio. Euro (einschließlich Sonderaufgaben) und 4 200 Mitarbeiterinnen und Mitarbeitern (Stand 2003). Gesellschafter der "Forschungszentrum Jülich GmbH" sind die Bundesrepublik Deutschland (90 %) und das Land Nordrhein-Westfalen (10 %). Das 1956 gegründete Forschungszentrum ist eines der 15 Mitglieder der Helmholtz-Gemeinschaft Deutscher Forschungszentren. In Jülich arbeiten Wissenschaftler der Disziplinen Physik, Chemie, Biologie, Medizin und Ingenieurwissenschaften in den Bereichen Materie, Energie, Information, Leben und Umwelt interdisziplinär zusammen. Langfristige, grundlagenorientierte Beiträge zu Naturwissenschaft und Technik werden ebenso erarbeitet wie konkrete technologische Anwendungen für die Industrie.

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Herzpumpe Schlüsseltechnologie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kommunikation ist alles – auch im Immunsystem
28.11.2017 | Universitätsklinikum Magdeburg

nachricht Wie der Stoffwechsel im Zellkern (Krebs-)Gene kontrolliert
28.11.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik