Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungszentrum Jülich liefert Schlüsseltechnologie für Herzpumpen

10.03.2004

Weltweit sind rund 15 Millionen Menschen chronisch herzkrank. Vielen bleibt zum Überleben nur die Hoffnung auf eine Transplantation. Rund 100 000 Spenderherzen werden jährlich benötigt etwa 2 500 stehen zur Verfügung. Die lebensrettende Alternative ist eine implantierbare Herzpumpe, welche die blutfördernde Funktion des Herzens übernimmt. Wissenschaftler des Forschungszentrums Jülich haben ein einzigartiges Magnetlager für diese Herzpumpen entwickelt. Mit der Jülicher Schlüsseltechnologie arbeiten Blutpumpen berührungslos und nahezu verschleißfrei, sind leichter, transportieren das Blut schonender und vermindern das Risiko der Thrombenbildung im Inneren der Pumpe. Jetzt erhielt das Forschungszentrum europäische und amerikanische Patente für diese in Herzpumpen eingesetzten Magnetlager.

Die Jülicher Technologie wird in Herzunterstützungspumpen eingesetzt, die von einem deutschen Unternehmen entwickelt wurden. Mit diesem hat das Forschungszentrum einen Lizenzvertrag geschlossen, der die Umsatzbeteiligung an dem neuartigen Kunstherztyp festlegt.

Die Blutpumpe wird neben das Herz in den Körper des Patienten implantiert und fördert das Blut von der linken Herzkammer direkt in die Aorta. Damit übernimmt sie die Pumpfunktion des Herzens und rettet den Patienten aus einer lebensbedrohlichen Situation, die andernfalls eine sofortige Herztransplantation erfordern würde.

Durch die einzigartige Magnetlagertechnik der Jülicher Wissenschaftler hebt sich die neuartige Unterstützungspumpe von anderen Kunstherzgenerationen ab. Der Rotor im Innern der Pumpe lagert berührungslos und somit verschleißfrei zwischen zwei Permanentmagneten und sorgt mit bis zu 12 000 Umdrehungen pro Minute für die erforderliche Pumpleistung.

Aufgrund des Jülicher Magnetlagers ist der Pumprotor so leicht, dass er auch mit pulsierender statt mit gleichbleibender Drehzahl betrieben werden könnte. Dadurch würde der Herzpuls des Menschen nachgebildet. Da der Rotor keinen mechanischen Kontakt zu Gehäuseteilen der Pumpe hat, entsteht keine Reibungswärme, und das Blut wird schonend transportiert. Zudem kann der Blutstrom an jeder Stelle ungehindert fließen das Risiko der Thrombenbildung im Innern der Pumpe ist damit erheblich reduziert. Die Herzunterstützungspumpe mit Jülicher Magnetlager ist weltweit die erste und bisher einzige implantierbare Blutpumpe mit magnetisch gelagertem Rotor, die für den klinischen Einsatz zugelassen wurde. In verschiedenen Herzzentren Europas und Chinas wurden bislang schon mehr als 100 Pumpen dieser Bauart implantiert. Mehreren Patienten konnte die Pumpe sogar wieder entnommen werden, nachdem sich ihr eigenes Herz erholt hatte.

Unter der Leitung von Dr. Johan Fremerey entwickelt das Magnetlagerlabor der Zentralabteilung Technologie (ZAT) des Forschungszentrums seit über 25 Jahren berührungslose Lager und Antriebssysteme. Wo Schmiermittel nicht zum Einsatz kommen können beispielsweise bei hohen Drehzahlen, empfindlichen Messinstrumenten oder in Vakuumanlagen sind Magnetlager die Lösung. Die Antriebswellen werden berührungslos von Permanentmagneten gehalten, wie sie viele von Magnettafeln kennen. "Um zu verhindern, das die Rotorwelle an den Magneten klebt, muss die Zugkraft der Magnete in jedem Moment exakt austariert werden", erklärt Johan Fremerey die technische Schwierigkeit. "Dies wird durch elektrische Spulen erreicht, die mithilfe von Sensoren gesteuert werden und jede Abweichung des Rotors aus seiner berührungslosen Lage unterbinden."

"Da wir keine unter Dauerstrom stehenden Elektromagnete benutzen, ist der Energieverbrauch unserer Magnetlager sehr gering", zählt der Physiker einen weiteren Vorteil auf. "Zudem werden nur zwei Magnetpaare benötigt." Dadurch ist die neuartige Herzunterstützungspumpe bei einem Durchmesser von 30 Millimeter nur 200 Gramm "schwer" und kann auch bei kleinen Patienten eingesetzt werden.

Das Jülicher Know-how aus dem Magnetlagerlabor wird von der Industrie erfolgreich vermarktet. Allein mit Vakuumpumpen auf der Basis der Jülicher Magnetlagertechnik hat die Industrie seit Beginn der neunziger Jahre Umsätze in Höhe von mehreren hundert Millionen Euro erzielt. Eine US-Studie aus dem Jahr 2001 prognostiziert für Herzunterstützungssysteme langfristig ein Potenzial von jährlich 6 Milliarden USDollar.

Zum Forschungszentrum Jülich: Das Forschungszentrum Jülich ist das größte interdisziplinäre Forschungszentrum in Europa mit einem Jahresetat von 360 Mio. Euro (einschließlich Sonderaufgaben) und 4 200 Mitarbeiterinnen und Mitarbeitern (Stand 2003). Gesellschafter der "Forschungszentrum Jülich GmbH" sind die Bundesrepublik Deutschland (90 %) und das Land Nordrhein-Westfalen (10 %). Das 1956 gegründete Forschungszentrum ist eines der 15 Mitglieder der Helmholtz-Gemeinschaft Deutscher Forschungszentren. In Jülich arbeiten Wissenschaftler der Disziplinen Physik, Chemie, Biologie, Medizin und Ingenieurwissenschaften in den Bereichen Materie, Energie, Information, Leben und Umwelt interdisziplinär zusammen. Langfristige, grundlagenorientierte Beiträge zu Naturwissenschaft und Technik werden ebenso erarbeitet wie konkrete technologische Anwendungen für die Industrie.

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Herzpumpe Schlüsseltechnologie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics