Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Würzburger Forscher machen Arteriosklerose sichtbar

23.01.2004


Die Arteriosklerose, auch als Verkalkung der Blutgefäße bezeichnet, entsteht zuerst in den Regionen der Aorta, die ganz nah beim Herzen liegen. Mediziner und Biophysiker von der Uni Würzburg haben es erstmals geschafft, diese Bereiche der Hauptschlagader mittels Magnetresonanz bei lebenden Mäusen sichtbar zu machen. Auf den Bildern lassen sich auch die Veränderungen erkennen, die mit der Arteriosklerose einhergehen.


Der Pfeil im Bild rechts zeigt bei einer gesunden Maus auf die Aorta, die so zart ist, dass sie im MR-Bild kaum erscheint. Dagegen ist die Wand der Aorta links massiv verdickt - ein Hinweis auf eine schwere Arteriosklerose. Aufnahmen: Wiesmann


Arteriosklerotische Plaques, mit Magnetresonanz (MR) sichtbar gemacht (a, b), im Vergleich mit dem entsprechenden Gewebeschnitt (c): Aussehen und Größe der Ablagerungen stimmen stark überein. Die Aussagekraft der Bilder ist sehr hoch. Bild: Wiesmann



Die Würzburger Wissenschaftler haben Mäuse benutzt, denen ein entscheidendes Gen für den Cholesterinstoffwechsel fehlt. Dadurch entstehen in den Blutgefäßen der Tiere automatisch arteriosklerotische Ablagerungen (Plaques), die denen beim Menschen sehr ähnlich sind. Dieser Prozess beginnt typischerweise in der Aortenwurzel, der aufsteigenden Aorta sowie im Aortenbogen.

... mehr zu:
»Aorta »Arteriosklerose »Blutgefäß »Gen


Weil diese Stellen nahe beim schlagenden Herzen liegen, ist es nicht gerade einfach, ein Bild von ihnen zu bekommen: Die Bewegungen des Herzmuskels und der Aorta selbst behindern nämlich den Prozess der MR-Bildgebung. Ein weiterer Störfaktor ist die Atmung. "Darum mussten wir die Bildgebung auf das EKG abstimmen und mit der Atembewegung synchronisiert durchführen", wie der Mediziner Dr. Frank Wiesmann erklärt.

Der Forscher von der Medizinischen Uniklinik hat diese Methode in Kooperation mit dem Würzburger Lehrstuhl für Biophysik entwickelt. Dank einer "hochaufgelösten Spin-Echo-Sequenz" gelangen nun erstmals die Aufnahmen von den Arteriosklerose-Plaques einer lebenden Maus. Die Qualität der Bilder ist laut Wiesmann so gut, dass sich die Gefäßwand und das Innere der Aorta sowohl im Brust- als auch im Bauchbereich sehr detailliert darstellen lassen.

"Jetzt können wir diese Art der Bildgebung einsetzen, um in Langzeitstudien die Mechanismen aufzudecken, die an der Entstehung oder an der Rückbildung der Arteriosklerose beteiligt sind", so Wiesmann. Das Verfahren eigne sich hervorragend, um diese Krankheitsprozesse im Gefäßsystem sehr detailliert zu verfolgen. Außerdem können die Würzburger Forscher nun besser untersuchen, welche Rolle bestimmte Gene, Proteine oder Enzyme bei der Entstehung der Arteriosklerose spielen.

Durch eine Arteriosklerose werden die Blutgefäße immer enger und steifer - sie verlieren zunehmend ihre Funktion. Schlimmstenfalls wird eine Arterie völlig verstopft, so dass die normalerweise von ihr versorgten Gewebe keinen Sauerstoff mehr bekommen. Das kann einen Herzinfarkt oder Schlaganfall auslösen.

An den beschriebenen Forschungen wirkten Wissenschaftler vom John-Radcliffe-Hospital der Universität Oxford mit. Gefördert wurden die Arbeiten von der Deutschen Forschungsgemeinschaft (DFG) und der British Heart Foundation. An der Uni Würzburg ist das Projekt im Sonderforschungsbereich 355 "Pathophysiologie der Herzinsuffizienz" beheimatet.

Frank Wiesmann, Michael Szimtenings, Alex Frydrychowicz, Ralf Illinger, Andreas Hunecke, Eberhard Rommel, Stefan Neubauer und Axel Haase: "High-Resolution MRI With Cardiac and Respiratory Gating Allows for Accurate In Vivo Atherosclerotic Plaque Visualization in the Murine Aortic Arch", in: Magnetic Resonance in Medicine 50 (2003), Seiten 69-74.

MR: Fotografie mit Magnetfeldern

Die Magnetresonanz (MR) liefert exakte Bilder aus dem Inneren des Körpers, ohne dass hierfür ein Eingriff in den Organismus nötig ist. Sie kommt ohne Kontrastmittel und Röntgenstrahlen aus, belastet den Organismus also nicht. Stattdessen arbeitet die Methode mit Magnetfeldern, welche die Atomkerne des Körpers kurzzeitig anregen. Beim Abklingen der Bewegung senden die Kerne dann Signale aus, die mit der MR registriert und in ein Bild übersetzt werden. Unter anderem können so Tumore oder Entzündungen im Nervensystem lokalisiert werden, was bei der Krankenbehandlung und medizinischen Forschung entscheidende Fortschritte gebracht hat.

Weitere Informationen: Dr. Frank Wiesmann, T 0931-888-5185, Fax -5508, E-Mail:
f.wiesmann@mail.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Aorta Arteriosklerose Blutgefäß Gen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Cybersicherheit für die Bahn von morgen

24.03.2017 | Informationstechnologie

Schnell und einfach: Edge Datacenter fürs Internet of Things

24.03.2017 | CeBIT 2017

Designer-Proteine falten DNA

24.03.2017 | Biowissenschaften Chemie