Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herz: Wenn der "Stent" nur kurz hilft

12.01.2004


Herzspezialisten der Universität Bonn haben herausgefunden, welche Zellen dafür verantwortlich sind, dass sich verengte Kranzgefäße nach der Behandlung oft schnell wieder verschließen. Schon jetzt kann eine neue Generation von Gefäßstützen (so genannte Stents) die Rückfallquote deutlich reduzieren: Die Stents geben über Monate hinweg Wirkstoffe ab, die verhindern, dass sich an der Gefäßinnenwand Narbengewebe bildet. Die Bonner Ergebnisse erklären erstmals genau, wo diese Präparate angreifen. Damit eröffnen sie neue Perspektiven, die Wiederverschluss-Rate weiter zu reduzieren.


Dieser Stent ist noch nicht einmal so dick wie ein Bleistift.



"Ein Stent ist im Prinzip ein zylinderförmiger Drahtkäfig, der die Herzkranzgefäße offen halten soll", erklärt der Bonner Internist und Kardiologe Professor Dr. Gerhard Bauriedel. "Von der Leiste aus führt man einen Ballon-Katheter unter lokaler Narkose zur Engstelle und bläst ihn dort auf. Dadurch wird der Engpass gesprengt und gleichzeitig die Stütze vor Ort verankert." Nach 30 Minuten ist die Behandlung beendet. "Den meisten Patienten geht es dann rasch besser." Doch trotz Stent kann sich an derselben Stelle binnen weniger Monate ein neuer Engpass ausbilden; bei jedem dritten Patienten beobachten die Mediziner ein halbes Jahr nach dem Eingriff eine derartige Restenose.

... mehr zu:
»Blutstrom »Stent


Ballonkatheter und Stent verursachen nämlich Wunden an der Gefäßinnenwand, die vernarben können. Bislang vermutete man, dass dabei Zellen aus der Arterienwand zum Stent wandern, sich dort vermehren und zusätzlich spezielle Proteine absondern, die die Ader nach und nach verschließen. Professor Bauriedel hat nun mit seinen Mitarbeitern Alexander Jabs, Dirk Skowasch und René Andrié im Tierexperiment nachgewiesen, dass eine ganz andere Zellgruppe eine viel wichtigere Rolle spielt: Schon nach wenigen Tagen siedeln sich nämlich bestimmte Zellen aus dem Blutstrom auf der geschädigten Gefäßoberfläche an. Diese "dendritischen" Zellen werden zunächst im Knochenmark gebildet und gelangen dann in den Blutkreislauf. Die verletzte Ader scheint sie richtiggehend zur Hilfe zu rufen. "Wir vermuten, dass sie sich dort in Bindegewebszellen umwandeln und so das Narbengewebe bilden", vermutet Bauriedel; "gleichzeitig produziert die Gefäßwand bestimmte Substanzen, die dafür sorgen, dass die "Reparatur"-Zellen länger überleben und nicht vom Blutstrom weggeschwemmt werden."

Paradigmenwechsel für die Arteriosklerose-Forschung

Als die Ergebnisse im September 2003 veröffentlicht wurden, stießen sie in der Fachwelt auf enorme Resonanz; kürzlich wurde Bauriedel für seinen Entdeckung sogar mit dem Förderpreis der Hans und Gertie Fischer-Stiftung ausgezeichnet. Dass es auch skeptische Stimmen gab, wundert den Bonner Forscher nicht: "Bisher galt: Gefäßwand-Zellen erzeugen die Narbe. Unsere Idee, Zellen aus dem Blutstrom könnten statt dessen die erneute Verengung verursachen, bedeutet nicht weniger als einen Paradigmenwechsel für die Arterioskleroseforschung."

Brandaktuelle klinische Ergebnisse geben seiner Theorie Rückenwind. Eine neue Generation von Stents kann nämlich die erneute Verengung der Ader in vielen Fällen verhindern. Dazu wird eine Gefäßstütze mit einem Kunststoffpolymer beschichtet, in das verschiedene wachstumshemmende Wirkstoffe eingebettet sind (so genannte "drug eluting" Stents). Nach der Implantation werden die Medikamente lokal freigesetzt und verhindern über Monate hinweg, dass sich an der verletzten Ader eine Narbe bildet. Spätestens nach einem halben Jahr ist die Gefäßwand dann so gut verheilt, dass die Gefahr gebannt ist.

Befehl zum Selbstmord

Der genaue Wirkstoffcocktail ist bislang noch Alchemie. Die heute zugelassenen Stents enthalten unter anderem das Pilzgift Rapamycin. Nur 5 bis 10 Prozent aller Patienten bekommen damit noch einen Rückfall - warum genau, war bisher unklar. "Wir konnten jetzt nachweisen, dass die dendritischen Zellen einen Rezeptor für Rapamycin tragen, an den die Substanz andocken kann", so Bauriedel. "Damit scheint sie den Zellen den Befehl zum Selbstmord zu geben." Seine Hoffnung: Vielleicht können andere Medikamente die dendritischen Zellen noch wirksamer in den Tod treiben oder auch bei denjenigen Patienten eine erneute Verengung verhindern, denen ein Rapamycin-Stent nicht helfen konnte.

Ansprechpartner:

Professor Dr. Gerhard Bauriedel
Medizinische Klinik und Poliklinik II,
Universitätsklinikum Bonn
Telefon: 0228/287-5097 oder -6670
E-Mail: gerhard.bauriedel@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Blutstrom Stent

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen