Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herz: Wenn der "Stent" nur kurz hilft

12.01.2004


Herzspezialisten der Universität Bonn haben herausgefunden, welche Zellen dafür verantwortlich sind, dass sich verengte Kranzgefäße nach der Behandlung oft schnell wieder verschließen. Schon jetzt kann eine neue Generation von Gefäßstützen (so genannte Stents) die Rückfallquote deutlich reduzieren: Die Stents geben über Monate hinweg Wirkstoffe ab, die verhindern, dass sich an der Gefäßinnenwand Narbengewebe bildet. Die Bonner Ergebnisse erklären erstmals genau, wo diese Präparate angreifen. Damit eröffnen sie neue Perspektiven, die Wiederverschluss-Rate weiter zu reduzieren.


Dieser Stent ist noch nicht einmal so dick wie ein Bleistift.



"Ein Stent ist im Prinzip ein zylinderförmiger Drahtkäfig, der die Herzkranzgefäße offen halten soll", erklärt der Bonner Internist und Kardiologe Professor Dr. Gerhard Bauriedel. "Von der Leiste aus führt man einen Ballon-Katheter unter lokaler Narkose zur Engstelle und bläst ihn dort auf. Dadurch wird der Engpass gesprengt und gleichzeitig die Stütze vor Ort verankert." Nach 30 Minuten ist die Behandlung beendet. "Den meisten Patienten geht es dann rasch besser." Doch trotz Stent kann sich an derselben Stelle binnen weniger Monate ein neuer Engpass ausbilden; bei jedem dritten Patienten beobachten die Mediziner ein halbes Jahr nach dem Eingriff eine derartige Restenose.

... mehr zu:
»Blutstrom »Stent


Ballonkatheter und Stent verursachen nämlich Wunden an der Gefäßinnenwand, die vernarben können. Bislang vermutete man, dass dabei Zellen aus der Arterienwand zum Stent wandern, sich dort vermehren und zusätzlich spezielle Proteine absondern, die die Ader nach und nach verschließen. Professor Bauriedel hat nun mit seinen Mitarbeitern Alexander Jabs, Dirk Skowasch und René Andrié im Tierexperiment nachgewiesen, dass eine ganz andere Zellgruppe eine viel wichtigere Rolle spielt: Schon nach wenigen Tagen siedeln sich nämlich bestimmte Zellen aus dem Blutstrom auf der geschädigten Gefäßoberfläche an. Diese "dendritischen" Zellen werden zunächst im Knochenmark gebildet und gelangen dann in den Blutkreislauf. Die verletzte Ader scheint sie richtiggehend zur Hilfe zu rufen. "Wir vermuten, dass sie sich dort in Bindegewebszellen umwandeln und so das Narbengewebe bilden", vermutet Bauriedel; "gleichzeitig produziert die Gefäßwand bestimmte Substanzen, die dafür sorgen, dass die "Reparatur"-Zellen länger überleben und nicht vom Blutstrom weggeschwemmt werden."

Paradigmenwechsel für die Arteriosklerose-Forschung

Als die Ergebnisse im September 2003 veröffentlicht wurden, stießen sie in der Fachwelt auf enorme Resonanz; kürzlich wurde Bauriedel für seinen Entdeckung sogar mit dem Förderpreis der Hans und Gertie Fischer-Stiftung ausgezeichnet. Dass es auch skeptische Stimmen gab, wundert den Bonner Forscher nicht: "Bisher galt: Gefäßwand-Zellen erzeugen die Narbe. Unsere Idee, Zellen aus dem Blutstrom könnten statt dessen die erneute Verengung verursachen, bedeutet nicht weniger als einen Paradigmenwechsel für die Arterioskleroseforschung."

Brandaktuelle klinische Ergebnisse geben seiner Theorie Rückenwind. Eine neue Generation von Stents kann nämlich die erneute Verengung der Ader in vielen Fällen verhindern. Dazu wird eine Gefäßstütze mit einem Kunststoffpolymer beschichtet, in das verschiedene wachstumshemmende Wirkstoffe eingebettet sind (so genannte "drug eluting" Stents). Nach der Implantation werden die Medikamente lokal freigesetzt und verhindern über Monate hinweg, dass sich an der verletzten Ader eine Narbe bildet. Spätestens nach einem halben Jahr ist die Gefäßwand dann so gut verheilt, dass die Gefahr gebannt ist.

Befehl zum Selbstmord

Der genaue Wirkstoffcocktail ist bislang noch Alchemie. Die heute zugelassenen Stents enthalten unter anderem das Pilzgift Rapamycin. Nur 5 bis 10 Prozent aller Patienten bekommen damit noch einen Rückfall - warum genau, war bisher unklar. "Wir konnten jetzt nachweisen, dass die dendritischen Zellen einen Rezeptor für Rapamycin tragen, an den die Substanz andocken kann", so Bauriedel. "Damit scheint sie den Zellen den Befehl zum Selbstmord zu geben." Seine Hoffnung: Vielleicht können andere Medikamente die dendritischen Zellen noch wirksamer in den Tod treiben oder auch bei denjenigen Patienten eine erneute Verengung verhindern, denen ein Rapamycin-Stent nicht helfen konnte.

Ansprechpartner:

Professor Dr. Gerhard Bauriedel
Medizinische Klinik und Poliklinik II,
Universitätsklinikum Bonn
Telefon: 0228/287-5097 oder -6670
E-Mail: gerhard.bauriedel@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Blutstrom Stent

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

nachricht Vorhersage entlastet das Gehirn
13.01.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik