Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ersatz für zerstörtes Knorpelgewebe durch neues Verfahren

06.01.2004


Wissenschaftler aus dem BBZ erhielten jetzt vom Europäischen Fonds für regionale Entwicklung (EFRE) rund 600 000 Euro über drei Jahre für die Entwicklung eines neuartigen Verfahrens zur Herstellung individuellen Knorpelgewebes. Während des gesamten Herstellungsvorgangs soll eine Qualitätskontrolle mittels NMR-Spektroskopie erfolgen.



Die Konzentration hochkarätiger Forscher am Biotechnologisch-Biomedizinischen Zentrum der Universität Leipzig erweist sich schon als nutzbringend: Prof. Augustinus Bader, Professur "Zelltechniken und angewandte Stammzellbiologien" und Dr. Daniel Huster, Nachwuchsgruppenleiter "Strukturaufklärung membranassoziierter Proteine mittels Festkörper-NMR", konnten jetzt beim Europäischen Fonds für regionale Entwicklung erfolgreich mehr als eine halbe Million Euro für ihr Projekt: "Entwicklung eines sterilen Bioreaktors zur individuellen Knorpelzüchtung mit NMR quality control/quality assurance (QC/QA)-Analyse" einwerben.



Bei dem Projekt geht es um Knorpelgewebe, das sich in unseren Gelenken befindet und das durch Rheuma und andere degenerative Erkrankungen zerstört werden kann. Dieser Vorgang ist nicht umkehrbar und am Ende schlimmstenfalls mit der Implantation eines künstlichen Gelenkes verbunden. Heutzutage kann man in einigen Fällen mit Hilfe künstlichen Knorpelgewebes, das direkt auf den Knochen aufgebracht wird, diese Entwicklung verhindern. Doch ob das neue Gewebe dem natürlichen gleichkommt, ist unklar.

Die Wissenschaftler um Bader und Huster wollen jetzt eine Methode entwickeln, die es ermöglicht, künstlichen Knorpel herzustellen, der quasi maßgeschneidert für den Patienten ist. Dazu werden diesem zunächst Knorpelzellen entnommen, die dann in einem Bioreaktor kultiviert werden. Der Bioreaktor ist verbunden mit einem NMR-Spektrometer. Dennoch darf der sterile Kreislauf nicht durchbrochen werden. Deshalb müssen die Experten eigens einen Bioreaktor entwickeln, der das garantiert - eine Voraussetzung für die Re-Implantation.

Warum aber die Kernresonanzspektroskopie, die den Vorgang kompliziert? Das genau ist der Knackpunkt, der das neue Verfahren von all denen unterscheidet, die es bereits gibt. Bisher kann niemand sagen, ob das künstlich gezüchtete Gewebe in seinen Eigenschaften dem natürlichen wirklich entspricht. Mit Hilfe der Kernsresonanzspektroskopie (NMR), die kleinste Strukturen auflösen kann, ist es nun möglich, bestimmte Komponenten zu erfassen, die z.B. die Elastizität des Knorpels garantieren. Noch während der Gewebeherstellung ist also eine ständige Qualitätskontrolle sowie die Dokumentation des Aufbaus der Knorpelstruktur gewährleistet. Man rechnet sogar damit, genau den Zeitpunkt erfassen zu können, der am günstigsten für eine Re-Implantation des neu entstandenen Knorpelgewebes ist.

Den Teil Bioreaktor-Entwicklung und Knorpelzüchtung übernimmt die Gruppe Bader, die NMR-Kontrollen die Gruppe Huster. Kooperationspartner an der Medizinischen Fakultät der Universität Leipzig sind die Klinik und Poliklinik für Orthopädie unter der Leitung von Prof. Georg Freiherr von Salis-Soglio und das Institut für Medizinische Physik und Biophysik unter Leitung von Prof. Klaus Arnold sowie in der Industrie die Firmen Bruker BioSpin GmbH und Bionethos Alphacells GmbH.

Weitere Informationen: Dr. Daniel Huster, Tel: 0341 97-15706, E-Mail: husd@medizin.uni-leipzig.de

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Berichte zu: Bioreaktor Knorpelgewebe NMR Re-Implantation

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Medikamente mildern Mukoviszidose
23.01.2018 | Medizinische Hochschule Hannover

nachricht Dreifachblockade am Glioblastom
23.01.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

Die Flugerprobung des Airbus A320neo

23.01.2018 | Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

23.01.2018 | Physik Astronomie

Neue Formeln zur Erforschung der Altersstruktur nicht-linearer dynamischer Systeme

23.01.2018 | Interdisziplinäre Forschung

Dreifachblockade am Glioblastom

23.01.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics