Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher verfolgen die Wege der Makrophagen direkt im Körper

08.12.2003


Es herrscht Alarm: Im Bein wurde ein Nerv verletzt, und nun rücken die Hilfstruppen an. Spezielle Fresszellen, die Makrophagen, räumen die Trümmer beiseite und schaffen so Platz für das Wachstum neuer Nervenfasern. Die Makrophagen spielen aber auch bei anderen Krankheiten des Nervensystems eine bedeutende Rolle, etwa bei der Multiplen Sklerose. Darum interessieren sich Forscher brennend für ihre Aktivitäten. Martin Bendszus und Guido Stoll von der Uni Würzburg können nun die Wege dieser Zellen direkt im Organismus verfolgen.



Hierzu werden spezielle Eisenoxid-Partikel, die sonst routinemäßig für die Diagnose von Lebertumoren zum Einsatz kommen, ins Blut injiziert. Die Makrophagen verleiben sich dann im Laufe von 24 Stunden diese Teilchen ein. Dadurch können sie mit Hilfe der Magnetresonanztomographie (MRT) sichtbar gemacht werden, wie die Würzburger Wissenschaftler im "Journal of Neuroscience" berichten.



Die MRT liefert Bilder aus dem Körper, funktioniert mit Magnetfeldern und belastet den Organismus nicht. Mit dieser Methode haben die Forscher beobachtet, wie die Makrophagen nach einer Verletzung des Ischiasnervs aus dem Blut zur "Unfallstelle" wandern. Angelockt werden sie von einem Notruf: Der Nerv kurbelt innerhalb von nur drei Stunden nach seiner Beschädigung die Produktion des Botenstoffs MCP-1 an, der die Fresszellen geradezu magnetisch anzieht. Sind die Makrophagen am Einsatzort angekommen, endet ihr Bewegungsdrang und sie nehmen einen festen Arbeitsplatz ein, wie Bendszus und Stoll festgestellt haben. Außerdem fanden die Forscher heraus, dass die Mobilität der Hilfstruppe auf bis zu acht Tage nach der Verletzung begrenzt bleibt.

Die Einwanderung von Makrophagen ins Nervensystem ist bei vielen neurologischen Krankheiten ein grundlegender Prozess. Mit der neuen MR-Methodik aus Würzburg kann er nun noch besser erforscht werden. Das Verfahren von Bendszus und Stoll bietet aber noch einen weiteren Vorteil, denn mit ihm lassen sich die Makrophagen von der so genannten Mikroglia unterscheiden. Bei letzterer handelt es sich um Fresszellen, die nur im Zentralen Nervensystem vorkommen, also in Gehirn und Rückenmark. Die beiden Zelltypen ähneln sich nach der Aktivierung bei Krankheitsprozessen so stark, dass sie mit herkömmlichen Gewebeanalysen nicht unterscheidbar sind. Doch die MR-Methode schafft auch das, was für die Forschung einen weiteren Pluspunkt bedeuten dürfte.

Martin Bendszus ist in der Abteilung für Neuroradiologie, Guido Stoll in der Neurologischen Klinik tätig. Die Arbeiten der beiden Wissenschaftler werden unter anderem gefördert von der Schering AG (Berlin), die Bendszus im Rahmen einer Stiftungsprofessur der Universität Würzburg unterstützt.

Weitere Informationen: Martin Bendszus, T (0931) 201-34790, Fax (0931) 201-34685, E-Mail:
bendszus@neuroradiologie.uni-wuerzburg.de

Martin Bendszus & Guido Stoll: "Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging", Journal of Neuroscience 23 (34), 26. November 2003, Seiten 10892 - 10896.

Robert Emmerich | idw

Weitere Berichte zu: Fresszelle Makrophage Nervensystem Organismus

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik