Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunschutz durch Selbstzerstörung

25.08.2003


Mechanismus der T-Zellaktivierung bei Tuberkulose aufgeklärt / Entscheidender Fortschritt für die Entwicklung zukünftiger Impfstrategien


Abb. : Die Aufnahme durch das konfokale Mikroskop zeigt nicht infizierte dendritische Zellen, die Vesikel von Tuberkulose-infizierten Zellen (rot) in ihre zelleigenen Verdauungsbläschen (grün) aufgenommen haben. An den Stellen, wo die Vesikelinhalte zusammenkommen, entsteht eine Gelbfärbung.

Foto: Max-Planck-Institut für Infektionsbiologie



Bislang konnten sich die Wissenschaftler nicht erklären, warum die Impfung gegen Tuberkulose so wenig erfolgreich ist. Die in der Ausgabe August 2003 (Vol. 9, No. 8, Seite 1039) von Nature Medicine publizierten Ergebnisse der Arbeitsgruppe um Ulrich E. Schaible aus der Abteilung von Prof. Stefan H. E. Kaufmann vom Max-Planck-Institut für Infektionsbiologie in Berlin liefern nun entscheidende Einblicke in den Mechanismus der Aktivierung von T-Zellen im Zuge einer Infektion mit Mykobakterien, dem Erreger der Tuberkulose.



Ein Drittel der Weltbevölkerung ist nach Schätzungen der Weltgesundheitsorganisation (WHO) mit dem Erreger der Tuberkulose infiziert. Zum Glück erkranken davon nur zehn Prozent wirklich schwer, vor allem Menschen mit einem aufgrund von Hunger und Krankheit geschwächten Immunsystem. Mangelnde gesundheitliche Versorgung sowie unzureichende Ernährung haben allerdings in vielen osteuropäischen Staaten in den vergangenen Jahren dazu geführt, dass sich die Tuberkulose dort stark ausbreitet und sich multiresistente Stämme entwickeln konnten; diese stellen auch für das übrige Europa ein zunehmendes Gesundheitsrisiko dar. Eines der wichtigen Ziele der infektionsbiologischen Forschung ist daher die Entwicklung eines neuen Impfstoffes im Kampf gegen die Tuberkulose.

Dringen Bakterien in den Körper ein, so werden sie in der Regel von Makrophagen, den Fresszellen des Immunsystems, aufgenommen und zerkleinert. Die resultierenden Eiweißbruchstücke werden aufbereitet und im Verbund mit den so genannten MHC-Molekülen an der Oberfläche des Makrophagen präsentiert; sie werden so zum erkennbaren Antigen. Die Kopplung der Eiweißbruchstücke an das entsprechende MHC-Molekül (in diesem Fall die MHC-Moleküle Klasse I) erfolgt im Zytoplasma des Makrophagen. Anschließend werden die Eiweißbruchstücke zur Zelloberfläche transportiert, wo sie wie ein Fähnchen an den MHC-Molekülen flatternd den körpereigenen Abwehrzellen die Infektion signalisieren. Für den weiteren Verlauf der Immunabwehr sind dann die T-Lymphozyten (oder einfach T-Zellen) von entscheidender Bedeutung. Dabei unterscheiden die Forscher zwei verschiedene T-Zellpopulationen: jene, die so genannte CD4-Moleküle tragen und jene, an die CD8-Moleküle angeheftet sind. Diese Moleküle spielen im Erkennungsprozess eine wichtige Rolle, stabilisieren sie doch die Bindung zwischen MHC-Molekül und T-Zelle. CD8 T-Zellen können die mit dem Erreger der Tuberkulose, den Mykobakterien, infizierte Zellen abtöten.

Nun gelangen Mykobakterien jedoch gar nicht erst in das Zytoplasma der Fresszelle, wie die Forscher entdeckt haben. Eingeschlossen in ein flüssigkeitsgefülltes Bläschen, die Verdauungsvakuole des Makrophagen, hemmen sie dessen Reifung und schaffen sich auf diese Weise in ihrer Wirtszelle eine Nische zum Überleben und zur Vermehrung. Doch glücklicherweise besitzt unser Immunsystem einen zusätzlichen Schutzmechanismus, der den Zugriff auf die Erregerzellen sicherstellt, wie Schaible und seine Mitarbeiter am Berliner Max-Planck-Institut für Infektionsbiologie in Zusammenarbeit mit US-amerikanischen Kollegen jetzt zeigen konnten. "Der Makrophage startet ein Selbstzerstörungsprogramm - wir nennen das den programmierten Zelltod - und zerfällt dabei in kleine Stücke, so genannte Vesikel, die vollgepackt sind mit mykobakteriellen Antigenen", erläutert der Infektionsbiologe. Diese Vesikel werden von nicht infizierten Nachbarzellen, in erster Linie den dendritischen Zellen, aufgenommen. Sie sind in der Lage, die Antigen-"Fähnchen" an ihre MHC-Moleküle anzuheften, und lösen so auf eine sehr wirksame Weise die Immunantwort aus. Wird der programmierte Zelltod des Makrophagen im Experiment unterdrückt, werden auch keine T-Zellen aktiviert.

Mit ihren Untersuchungen konnten die Max-Planck-Wissenschaftler erstmals zeigen, dass eine solche Kreuzpräsentation, so der wissenschaftliche Fachbegriff, bei bakteriellen Infektionen des Menschen eine Rolle spielt ein Befund, der auch für eine zukünftige Impfstoffentwicklung von entscheidender Bedeutung sein könnte. Der bisher gebräuchliche BCG-Impfstoff löst tatsächlich keinen programmierten Zelltod aus und kann somit auch die CD8 T-Zellen nicht aktivieren; vielleicht ist er, so die Vermutung der Wissenschaftler, deshalb nicht richtig wirksam.

Originalveröffentlichung:

Schaible, U. E., Winau, F., Sieling, P.A., Fischer, K., Collins, H. L., Hagens, K., Modlin, R.L., Brinkmann, V., Kaufmann, S. H. E.
Apoptosis facilitates antigen presentation to T-Lymphocytes through MHC-I and CD1 in tuberculosis
Nature Medicine, Vol. 9, No. 8: 1039-1046, August 2003

Weitere Informationen erhalten Sie von:

Dr. Ulrich Schaible
Max-Planck-Institut für Infektionsbiologie, Berlin
Tel.: 030 28460 - 575
Fax.: 030 28460 - 501
E-Mail: schaible@mpiib-berlin.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/infektionsbiologie/index.html

Weitere Berichte zu: MHC-Molekül Makrophage T-Zelle Tuberkulose

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Methode der Eisenverabreichung
26.04.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Bestrahlung bei Hirntumoren? Eine neue, verlässlichere Einteilung erleichtert die Entscheidung
26.04.2017 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie